Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 20(10): 17747-59, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26404215

RESUMEN

Plantago major L. produces several chemical substances with anti-inflammatory and analgesic activities and its use in the treatment of oral and throat inflammation in popular medicine is well described. In this study, the antioxidant potential of the Plantago major hydroethanolic extract was screened and its protective action was evaluated against t-BOOH-induced oxidative stress. The extract was obtained by fractionated percolation using 50% ethanolic solution and, after drying, suspended in dimethyl sulfoxide. The chromatographic profile of crude extract was obtained with the identification of some phytochemical markers and the total phenols and flavonoids were quantified. The scavenger activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals was determined and the antioxidant activity in biological systems was evaluated in isolated rat liver mitochondria and HepG2 cells. The extract exhibited a significant free radical scavenger activity at 0.1 mg/mL, and decreased the ROS (reactive oxygen species) generation in succinate-energized mitochondria. Such an effect was associated with the preservation of the intrinsic antioxidant defenses (reduced glutathione and NAD(P)H) against the oxidation by t-BOOH, and also to the protection of membranes from lipid oxidation. The cytoprotective effect of PmHE against t-BOOH induced cell death was also shown. These findings contribute to the understanding of the health benefits attributed to P. major.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantago/química , Línea Celular , Humanos , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
2.
Langmuir ; 30(45): 13689-98, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25343461

RESUMEN

We investigated the structure of the binary mixture of Pluronic F-127 (PL F-127) and Pluronic L-81 (PL L-81), as hydrogels for sumatriptan delivery and investigated the mixture possible use via subcutaneous route for future applications as a long-acting antimigraine formulation. We studied the drug-micelle interaction by dynamic light scattering and differential scanning calorimetry, sol-gel process by rheology, and small-angle X-ray scattering (SAXS). We also employed pharmaceutical formulation aspects by dissolution rate, release profile, and cytotoxicity studies for apoptosis and/or necrosis in fibroblasts (3T3) and neural cells (Neuro 2a). Micellar hydrodynamic diameter studies revealed the formation of binary PL-micelles by association of PL F-127/PL L-81. The mixed micelle and binary hydrogels formation was also verified by only one phase transition temperature for all formulations, even in the presence of sumatriptan. The characterization of the hydrogel supramolecular organization by SAXS, rheology studies, and in vitro dissolution/release results showed a probable relationship between the transition of the lamellar to the hexagonal phase and the lower release constant values observed, indicating that PL L-81 participates in micelle-hydrogel formation and aggregation processes. Furthermore, the reduced cytotoxicity (annexin V-fluorescein isothiocyanate positive staining), with minor PL L-81 concentration, points to its potential use for the development of binary PL-systems containing sumatriptan capable of modulating the gelation process. This use may employ the minimum PL concentration and be interesting for pharmaceutical applications, particularly for migraine treatment.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles/química , Poloxámero/química , Sumatriptán/farmacología , Sumatriptán/farmacocinética , Células 3T3 , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Química Física , Relación Dosis-Respuesta a Droga , Liberación de Fármacos/efectos de los fármacos , Hidrogeles/farmacología , Cinética , Ratones , Poloxámero/farmacología , Relación Estructura-Actividad , Sumatriptán/administración & dosificación , Termodinámica
3.
Life (Basel) ; 12(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36294912

RESUMEN

Mitochondria have pivotal roles in cellular physiology including energy metabolism, reactive oxygen species production, Ca2+ homeostasis, and apoptosis. Altered mitochondrial morphology and function is a common feature of cancer cells and the regulation of mitochondrial homeostasis has been identified as a key to the response to chemotherapeutic agents in human leukemias. Here, we explore the mechanistic aspects of cytotoxicity produced by thioridazine (TR), an antipsychotic drug that has been investigated for its anticancer potential in human leukemia cellular models. TR exerts selective cytotoxicity against human leukemia cells in vitro. A PCR array provided a general view of the expression of genes involved in cell death pathways. TR immediately produced a pulse of cytosolic Ca2+, followed by mitochondrial uptake, resulting in mitochondrial permeabilization, caspase 9/3 activation, endoplasmic reticulum stress, and apoptosis. Ca2+ chelators, thiol reducer dithiothreitol, or CHOP knockdown prevented TR-induced cell death. TR also exhibited potent cytotoxicity against BCL-2/BCL-xL-overexpressing leukemia cells. Additionally, previous studies have shown that TR exhibits potent antitumor activity in vivo in different solid tumor models. These findings show that TR induces a Ca2+-mediated apoptosis with involvement of mitochondrial permeabilization and ER stress in leukemia and it emphasizes the pharmacological potential of TR as an adjuvant in antitumor chemotherapy.

4.
Chem Biol Interact ; 315: 108888, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31682805

RESUMEN

Relapse and drug resistance is still major challenges in the treatment of leukemia. Promethazine, an antihistaminic phenothiazine derivative, has been used to prevent chemotherapy-induced emesis, although there is no report about its antitumor potential. Thus, we evaluated the promethazine cytotoxicity against several leukemia cells and the underlying mechanisms were investigated. Promethazine exhibited potent and selective cytotoxicity against all leukemia cell types in vitro at clinically relevant concentrations. Philadelphia positive chronic myeloid leukemia (CML) K562 cells were the most sensitive cell line. The cytotoxicity of promethazine in these cells was triggered by the activation of AMPK and inhibition of PI3K/AKT/mTOR pathway. The subsequent downstream effects were NOXA increase, MCL-1 decrease, and Beclin-1 activation, resulting in autophagy-associated apoptosis. These data highlight targeting autophagy may represent an interesting strategy in CML therapy, and also the antitumor potential of promethazine by acting in AMPK and PI3K/AKT/mTOR signaling pathways. Since this drug is currently used with relative low side effects, its repurposing may represent a new therapeutic opportunity for leukemia treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Fosforilación/efectos de los fármacos , Prometazina/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Células Jurkat , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
5.
Cell Rep ; 22(11): 2827-2836, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539413

RESUMEN

Endoplasmic reticulum (ER) stress is transmitted to mitochondria and is associated with pathologic mitochondrial dysfunction in diverse diseases. The PERK arm of the unfolded protein response (UPR) protects mitochondria during ER stress through the transcriptional and translational remodeling of mitochondrial molecular quality control pathways. Here, we show that ER stress also induces dynamic remodeling of mitochondrial morphology by promoting protective stress-induced mitochondrial hyperfusion (SIMH). ER-stress-associated SIMH is regulated by the PERK arm of the UPR and activated by eIF2α phosphorylation-dependent translation attenuation. We show that PERK-regulated SIMH is a protective mechanism to prevent pathologic mitochondrial fragmentation and promote mitochondrial metabolism in response to ER stress. These results identify PERK-dependent SIMH as a protective stress-responsive mechanism that regulates mitochondrial morphology during ER stress. Furthermore, our results show that PERK integrates transcriptional and translational signaling to coordinate mitochondrial molecular and organellar quality control in response to pathologic ER insults.


Asunto(s)
Estrés del Retículo Endoplásmico/inmunología , Mitocondrias/metabolismo , Respuesta de Proteína Desplegada/inmunología , Enfermedad Aguda , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA