RESUMEN
5T4 (trophoblast glycoprotein, TPBG) is a transmembrane tumor antigen expressed on more than 90% of primary renal cell carcinomas (RCC) and a wide range of human carcinomas but not on most somatic adult tissues. The favorable expression pattern has encouraged the development and clinical testing of 5T4-targeted antibody and vaccine therapies. 5T4 also represents a compelling and unexplored target for T-cell receptor (TCR)-engineered T-cell therapy. Our group has previously isolated high-avidity CD8+ T-cell clones specific for an HLA-A2-restricted 5T4 epitope (residues 17-25; 5T4p17). In this report, targeted single-cell RNA sequencing was performed on 5T4p17-specific T-cell clones to sequence the highly variable complementarity-determining region 3 (CDR3) of T-cell receptor α chain (TRA) and ß chain (TRB) genes. Full-length TRA and TRB sequences were cloned into lentiviral vectors and transduced into CD8+ T-cells from healthy donors. Redirected effector T-cell function against 5T4p17 was measured by cytotoxicity and cytokine release assays. Seven unique TRA-TRB pairs were identified. All seven TCRs exhibited high expression on CD8+ T-cells with transduction efficiencies from 59 to 89%. TCR-transduced CD8+ T-cells demonstrated redirected cytotoxicity and cytokine release in response to 5T4p17 on target-cells and killed 5T4+/HLA-A2+ kidney-, breast-, and colorectal-tumor cell lines as well as primary RCC tumor cells in vitro. TCR-transduced CD8+ T-cells also detected presentation of 5T4p17 in TAP1/2-deficient T2 target-cells. TCR-transduced T-cells redirected to recognize the 5T4p17 epitope from a broadly shared tumor antigen are of interest for future testing as a cellular immunotherapy strategy for HLA-A2+ subjects with 5T4+ tumors.
Asunto(s)
Linfocitos T CD8-positivos/fisiología , Vacunas contra el Cáncer/inmunología , Carcinoma de Células Renales/terapia , Epítopos de Linfocito T/metabolismo , Inmunoterapia Adoptiva/métodos , Neoplasias Renales/terapia , Glicoproteínas de Membrana/metabolismo , Linfocitos T CD8-positivos/trasplante , Carcinoma de Células Renales/inmunología , Células Clonales , Citotoxicidad Inmunológica , Epítopos de Linfocito T/inmunología , Antígeno HLA-A2/metabolismo , Humanos , Neoplasias Renales/inmunología , Glicoproteínas de Membrana/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genéticaRESUMEN
Objective responses of metastatic renal cell carcinoma (RCC) associated with systemic immunotherapies suggest the potential for T-cell-mediated tumor clearance. Recent analyses associate clonally expanded T cells present in the tumor at diagnosis with responses to immune checkpoint inhibitors (ICIs). To identify and further characterize tumor-associated, clonally expanded T cells, we characterized the density, spatial distribution, T-cell receptor (TCR) repertoire, and transcriptome of tumor-infiltrating T cells from 14 renal tumors at the time of resection and compared them with T cells in peripheral blood and normal adjacent kidney. Multiplex immunohistochemistry revealed that T-cell density was higher in clear cell RCC (ccRCC) than in other renal tumor histologies with spatially nonuniform T-cell hotspots and exclusion zones. TCR repertoire analysis also revealed increased clonal expansion in ccRCC tumors compared with non-clear cell histologies or normal tissues. Expanded T-cell clones were most frequently CD8+ with some detectable in peripheral blood or normal kidney and others found exclusively within the tumor. Divergent expression profiles for chemokine receptors and ligands and the Ki67 proliferation marker distinguished tumor-restricted T-cell clones from those also present in blood suggesting a distinct phenotype for subsets of clonally expanded T cells that also differed for upregulated markers of T-cell activation and exhaustion. Thus, our single-cell level stratification of clonally expanded tumor infiltrating T-cell subpopulations provides a framework for further analysis. Future studies will address the spatial orientation of these clonal subsets within tumors and their association with treatment outcomes for ICIs or other therapeutic modalities.
RESUMEN
Burkitt lymphoma (BL), the most common pediatric cancer in sub-Saharan Africa, is a malignancy of antigen-experienced B lymphocytes. High-throughput sequencing (HTS) of the immunoglobulin heavy (IGH) and light chain (IGK/IGL) loci was performed on genomic DNA from 51 primary BL tumors: 19 from Uganda and 32 from Ghana. Reverse transcription polymerase chain reaction analysis and tumor RNA sequencing (RNAseq) was performed on the Ugandan tumors to confirm and extend the findings from the HTS of tumor DNA. Clonal IGH and IGK/IGL rearrangements were identified in 41 and 46 tumors, respectively. Evidence for rearrangement of the second IGH allele was observed in only 6 of 41 tumor samples with a clonal IGH rearrangement, suggesting that the normal process of biallelic IGHD to IGHJ diversity-joining (DJ) rearrangement is often disrupted in BL progenitor cells. Most tumors, including those with a sole dominant, nonexpressed DJ rearrangement, contained many IGH and IGK/IGL sequences that differed from the dominant rearrangement by < 10 nucleotides, suggesting that the target of ongoing mutagenesis of these loci in BL tumor cells is not limited to expressed alleles. IGHV usage in both BL tumor cohorts revealed enrichment for IGHV genes that are infrequently used in memory B cells from healthy subjects. Analysis of publicly available DNA sequencing and RNAseq data revealed that these same IGHV genes were overrepresented in dominant tumor-associated IGH rearrangements in several independent BL tumor cohorts. These data suggest that BL derives from an abnormal B-cell progenitor and that aberrant mutational processes are active on the immunoglobulin loci in BL cells.