Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Genes Dev ; 31(17): 1770-1783, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28982760

RESUMEN

Direct reprogramming of fibroblasts to cardiomyocytes represents a potential means of restoring cardiac function following myocardial injury. AKT1 in the presence of four cardiogenic transcription factors, GATA4, HAND2, MEF2C, and TBX5 (AGHMT), efficiently induces the cardiac gene program in mouse embryonic fibroblasts but not adult fibroblasts. To identify additional regulators of adult cardiac reprogramming, we performed an unbiased screen of transcription factors and cytokines for those that might enhance or suppress the cardiogenic activity of AGHMT in adult mouse fibroblasts. Among a collection of inducers and repressors of cardiac reprogramming, we discovered that the zinc finger transcription factor 281 (ZNF281) potently stimulates cardiac reprogramming by genome-wide association with GATA4 on cardiac enhancers. Concomitantly, ZNF281 suppresses expression of genes associated with inflammatory signaling, suggesting the antagonistic convergence of cardiac and inflammatory transcriptional programs. Consistent with an inhibitory influence of inflammatory pathways on cardiac reprogramming, blockade of these pathways with anti-inflammatory drugs or components of the nucleosome remodeling deacetylase (NuRD) complex, which associate with ZNF281, stimulates cardiac gene expression. We conclude that ZNF281 acts at a nexus of cardiac and inflammatory gene programs, which exert opposing influences on fibroblast to cardiac reprogramming.


Asunto(s)
Reprogramación Celular/genética , Regulación de la Expresión Génica/genética , Factores de Transcripción/metabolismo , Antiinflamatorios/farmacología , Reprogramación Celular/efectos de los fármacos , Fibroblastos/fisiología , Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Proteínas Represoras , Transcriptoma
2.
Med Res Rev ; 35(3): 437-63, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25764065

RESUMEN

Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle.


Asunto(s)
Músculo Esquelético/metabolismo , Sistema Renina-Angiotensina/fisiología , Animales , Atrofia , Fibrosis , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Ratones , Músculo Esquelético/patología , Peptidil-Dipeptidasa A/fisiología
3.
Pflugers Arch ; 467(9): 1975-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25292283

RESUMEN

Angiotensin-(1-7) [Ang (1-7)] is a peptide belonging to the non-classical renin-angiotensin system (RAS). Ang (1-7), through its receptor Mas, has an opposite action to angiotensin II (Ang II), the typical peptide of the classical RAS axis. Ang II produces skeletal muscle atrophy, a pathological condition characterised by the loss of strength and muscle mass. A feature of muscle atrophy is the decrease of the myofibrillar proteins produced by the activation of the ubiquitin-proteasome pathway (UPP), evidenced by the increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. In addition, it has been described that Ang II also induces myonuclear apoptosis during muscle atrophy. We assessed the effects of Ang (1-7) and Mas participation on myonuclear apoptosis during skeletal muscle atrophy induced by Ang II. Our results show that Ang (1-7), through Mas, prevents the effects induced by Ang II in the diaphragm muscles and decreases several events associated with apoptosis in the diaphragm (increased apoptotic nuclei, increased expression of caspase-8 and caspase-9, increased caspase-3 activity and increased Bax/Bcl-2 ratio). Concomitantly, Ang (1-7) also attenuates the decrease in fibre diameter and muscle strength, and prevents the increase in atrogin-1 and MuRF-1 during the muscle wasting induced by Ang II. Interestingly, these effects of Ang (1-7) are dependent on the Mas receptor. Thus, we demonstrated for the first time that Ang (1-7) prevents myonuclear apoptosis during the recovery of skeletal muscle atrophy induced by Ang II.


Asunto(s)
Angiotensina II/efectos adversos , Angiotensina I/metabolismo , Apoptosis/fisiología , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Modelos Animales de Enfermedad , Immunoblotting , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Reacción en Cadena de la Polimerasa , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
Hum Mol Genet ; 22(24): 4938-51, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23904456

RESUMEN

In Duchenne muscular dystrophy (DMD) and the mdx mouse model, the absence of the cytoskeletal protein dystrophin causes defective anchoring of myofibres to the basal lamina. The resultant myofibre degeneration and necrosis lead to a progressive loss of muscle mass, increased fibrosis and ultimately fatal weakness. Connective tissue growth factor (CTGF/CCN-2) is critically involved in several chronic fibro-degenerative diseases. In DMD, the role of CTGF might extend well beyond replacement fibrosis secondary to loss of muscle fibres, since its overexpression in skeletal muscle could by itself induce a dystrophic phenotype. Using two independent approaches, we here show that mdx mice with reduced CTGF availability do indeed have less severe muscular dystrophy. Mdx mice with hemizygous CTGF deletion (mdx-Ctgf+/-), and mdx mice treated with a neutralizing anti-CTGF monoclonal antibody (FG-3019), performed better in an exercise endurance test, had better muscle strength in isolated muscles and reduced skeletal muscle impairment, apoptotic damage and fibrosis. Transforming growth factor type-ß (TGF-ß), pERK1/2 and p38 signalling remained unaffected during CTGF suppression. Moreover, both mdx-Ctgf+/- and FG-3019 treated mdx mice had improved grafting upon intramuscular injection of dystrophin-positive satellite cells. These findings reveal the potential of targeting CTGF to reduce disease progression and to improve cell therapy in DMD.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Apoptosis/genética , Tratamiento Basado en Trasplante de Células y Tejidos , Factor de Crecimiento del Tejido Conjuntivo/antagonistas & inhibidores , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Fibrosis/genética , Genotipo , Supervivencia de Injerto/genética , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fuerza Muscular/genética , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/terapia , Transducción de Señal , Proteínas Smad/metabolismo , Trasplante de Células Madre , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Histochem Cell Biol ; 143(2): 131-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25208653

RESUMEN

Skeletal muscle atrophy during sepsis, immobilization, and chronic diseases is characterized by an increase in expression and activity of the muscle-specific ubiquitin 3 ligases atrogin-1 and MuRF-1. The classical renin-angiotensin system (RAS), by high level of circulating angiotensin II (AngII) is directly involved in skeletal muscle wasting associated with cardiac and renal failure. Ang (1-7), a peptide belonging to the non-classical RAS system, produces effects that are opposite to AngII. The actions of Ang (1-7) are mediated by its binding and signalling through the Mas receptor. Our purpose is to assess the effects of atrophic stimuli AngII, lipopolysaccharide (LPS), and immobilization on the expression of the Mas receptor in skeletal muscle. For that we used gastrocnemius and tibialis anterior muscles of C57BL10 mice treated with AngII, LPS or subjected to unilateral hindlimb immobilization by casting. In addition, we used C2C12 myotubes incubated with AngII or LPS. We evaluated Mas expression by quantitative real-time PCR, Western blot immunohistochemical analysis. Skeletal muscle atrophy was corroborated by the expression of atrogin-1 and MuRF-1 and the fibre diameter. Our results show that Mas receptor expression was increased by AngII or LPS in vitro and in vivo, and upregulated by immobilization. The increase of the Mas expression was concomitantly with the upregulation of atrogin-1 and MuRF-1 and the reduction of the fibre diameter. These results from studies in vitro and in vivo demonstrate for the first time that the Mas receptor is increased under atrophic stimulus and suggest that the non-classical RAS system could have an important role in muscle wasting.


Asunto(s)
Músculo Esquelético/fisiopatología , Atrofia Muscular/fisiopatología , Receptores Acoplados a Proteínas G/genética , Regulación hacia Arriba , Angiotensina II/farmacología , Animales , Células Cultivadas , Immunoblotting , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Unión Proteica/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Regulación hacia Arriba/efectos de los fármacos
6.
Clin Sci (Lond) ; 128(5): 307-19, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25222828

RESUMEN

Skeletal muscle atrophy is a pathological condition characterized by the loss of strength and muscle mass, an increase in myosin heavy chain (MHC) degradation and increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. Angiotensin II (AngII) induces muscle atrophy. Angiotensin-(1-7) [Ang-(1-7)], through its receptor Mas, produces the opposite effects than AngII. We assessed the effects of Ang-(1-7) on the skeletal muscle atrophy induced by AngII. Our results show that Ang-(1-7), through Mas, prevents the effects induced by AngII in muscle gastrocnemius: the decrease in the fibre diameter, muscle strength and MHC levels and the increase in atrogin-1 and MuRF-1. Ang-(1-7) also induces AKT phosphorylation. In addition, our analysis in vitro using C2C12 myotubes shows that Ang-(1-7), through a mechanism dependent on Mas, prevents the decrease in the levels of MHC and the increase in the expression of the atrogin-1 and MuRF-1, both induced by AngII. Ang-(1-7) induces AKT phosphorylation in myotubes; additionally, we demonstrated that the inhibition of AKT with MK-2206 decreases the anti-atrophic effects of Ang-(1-7). Thus, we demonstrate for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by AngII through a mechanism dependent on the Mas receptor, which involves AKT activity. Our study indicates that Ang-(1-7) is novel molecule with a potential therapeutical use to improve muscle wasting associated, at least, with pathologies that present high levels of AngII.


Asunto(s)
Angiotensina II/farmacología , Angiotensina I/farmacología , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina I/administración & dosificación , Animales , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Músculo Esquelético/fisiopatología , Atrofia Muscular/fisiopatología , Cadenas Pesadas de Miosina/metabolismo , Fragmentos de Péptidos/administración & dosificación , Fosforilación/efectos de los fármacos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Clin Sci (Lond) ; 129(6): 461-76, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25989282

RESUMEN

Skeletal muscle atrophy induced during sepsis syndrome produced by endotoxin in the form of LPS (lipopolysaccharide), is a pathological condition characterized by the loss of strength and muscle mass, an increase in MHC (myosin heavy chain) degradation, and an increase in the expression of atrogin-1 and MuRF-1 (muscle-specific RING-finger protein 1), two ubiquitin E3 ligases belonging to the ubiquitin-proteasome system. Ang-(1-7) [Angiotensin-(1-7)], through its Mas receptor, has beneficial effects in skeletal muscle. We evaluated in vivo the role of Ang-(1-7) and Mas receptor on the muscle wasting induced by LPS injection into C57BL/10J mice. In vitro studies were performed in murine C2C12 myotubes and isolated myofibres from EDL (extensor digitorum longus) muscle. In addition, the participation of p38 MAPK (mitogen-activated protein kinase) in the Ang-(1-7) effect on the LPS-induced muscle atrophy was evaluated. Our results show that Ang-(1-7) prevents the decrease in the diameter of myofibres and myotubes, the decrease in muscle strength, the diminution in MHC levels and the induction of atrogin-1 and MuRF-1 expression, all of which are induced by LPS. These effects were reversed by using A779, a Mas antagonist. Ang-(1-7) exerts these anti-atrophic effects at least in part by inhibiting the LPS-dependent activation of p38 MAPK both in vitro and in vivo. We have demonstrated for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by endotoxin through a mechanism dependent on the Mas receptor that involves a decrease in p38 MAPK phosphorylation. The present study indicates that Ang-(1-7) is a novel molecule with a potential therapeutic use to improve muscle wasting during endotoxin-induced sepsis syndrome.


Asunto(s)
Angiotensina I/farmacología , Músculo Esquelético/metabolismo , Atrofia Muscular/prevención & control , Fragmentos de Péptidos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Análisis de Varianza , Animales , Células Cultivadas , Técnicas In Vitro , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Miofibrillas/efectos de los fármacos , Miofibrillas/patología , Distribución Aleatoria , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente , Síndrome de Respuesta Inflamatoria Sistémica/complicaciones , Ubiquitina-Proteína Ligasas/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Vasodilatadores/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos
8.
Lab Invest ; 94(10): 1068-82, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25068653

RESUMEN

During the pathogenesis of systemic inflammation, reactive oxygen species (ROS) circulate in the bloodstream and interact with endothelial cells (ECs), increasing intracellular oxidative stress. Although endothelial dysfunction is crucial in the pathogenesis of systemic inflammation, little is known about the effects of oxidative stress on endothelial dysfunction. Oxidative stress induces several functions, including cellular transformation. A singular process of cell conversion is tendothelial-to-mesenchymal transition, in which ECs become myofibroblasts, thus losing their endothelial properties and gaining fibrotic behavior. However, the participation of oxidative stress as an inductor of conversion of ECs into myofibroblasts is not known. Thus, we studied the role played by oxidative stress in this conversion and investigated the underlying mechanism. Our results show that oxidative stress induces conversion of ECs into myofibroblasts through decreasing the levels of endothelial markers and increasing those of fibrotic and ECM proteins. The underlying mechanism depends on the ALK5/Smad3/NF-κB pathway. Oxidative stress induces the expression and secretion of TGF-ß1 and TGF-ß2 and p38 MAPK phosphorylation. Downregulation of TGF-ß1 and TGF-ß2 by siRNA technology abolished the H2O2-induced conversion. To our knowledge, this is the first report showing that oxidative stress is able to induce conversion of ECs into myofibroblasts via TGF-ß secretion, emerging as a source for oxidative stress-based vascular dysfunction. Thus, oxidative stress emerges as a decisive factor in inducing conversion of ECs into myofibroblasts through a TGF-ß-dependent mechanism, changing the ECs protein expression profile, and converting normal ECs into pathological ones. This information will be useful in designing new and improved therapeutic strategies against oxidative stress-mediated systemic inflammatory diseases.


Asunto(s)
Células Endoteliales/fisiología , Transición Epitelial-Mesenquimal , Estrés Oxidativo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Miofibroblastos/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteína smad3/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Clin Sci (Lond) ; 127(4): 251-64, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24588264

RESUMEN

AngII (angiotensin II) induces pathological conditions such as fibrosis in skeletal muscle. In this process, AngII increases ROS (reactive oxygen species) and induces a biphasic phosphorylation of p38 MAPK (mitogen-activated protein kinase). In addition, AngII stimulates the expression and production of TGF (transforming growth factor)-ß1 via a mechanism dependent on ROS production mediated by NADPH oxidase (NOX) and p38 MAPK activation. In the present study, we investigated whether Ang-(1-7) [angiotensin-(1-7)], through the Mas-1 receptor, can counteract the signalling induced by AngII in mouse skeletal muscle and cause a decrease in the expression and further activity of TGF-ß1 in skeletal muscle cells. Our results show that Ang-(1-7) decreased the expression of TGF-ß1 induced by AngII in a dose-dependent manner. In addition, we observed that Ang-(1-7) prevented the increase in TGF-ß1 expression induced by AngII, ROS production dependent on NOX and the early phase of p38 MAPK phosphorylation. Interestingly, Ang-(1-7) also prevented the late phase of p38 MAPK phosphorylation, Smad-2 phosphorylation and Smad-4 nuclear translocation, an increase in transcriptional activity, as determined using the p3TP-lux reporter, and fibronectin levels, all of which are dependent on the TGF-ß1 levels induced by AngII. We also demonstrated that Ang-(1-7) prevented the increase in TGF-ß1, fibronectin and collagen content in the diaphragm of mice infused with AngII. All of these effects were reversed by the administration of A779, indicating the participation of Mas-1. In conclusion, our findings support the hypothesis that Ang-(1-7) decreases the expression and further biological activity of TGF-ß1 induced by AngII in vitro and in vivo.


Asunto(s)
Angiotensina II/metabolismo , Angiotensina I/metabolismo , Músculo Esquelético/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Proto-Oncogenes Mas , Receptor de Angiotensina Tipo 1/metabolismo , Proteína Smad4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Cell Tissue Res ; 353(1): 173-87, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23673415

RESUMEN

The renin-angiotensin system (RAS), through angiotensin II and the angiotensin-converting enzyme (ACE), is involved in the genesis and progression of fibrotic diseases characterized by the replacement of normal tissue by an accumulation of an extracellular matrix (ECM). Duchenne muscular dystrophy (DMD) presents fibrosis and a decrease in muscle strength produced by chronic damage. The mdx mouse is a murine model of DMD and develops the same characteristics as dystrophic patients when subjected to chronic exercise. The connective tissue growth factor (CTGF/CCN2) and transforming growth factor type beta (TGF-ß), which are overexpressed in muscular dystrophies, play a major role in many progressive scarring conditions. We have tested the hypothesis that ACE inhibition decreases fibrosis in dystrophic skeletal muscle by treatment of mdx mice with the ACE inhibitor enalapril. Both sedentary and exercised mdx mice treated with enalapril showed improvement in gastrocnemius muscle strength explained by a reduction in both muscle damage and ECM accumulation. ACE inhibition decreased CTGF expression in sedentary or exercised mdx mice and diminished CTGF-induced pro-fibrotic activity in a model of CTGF overexpression by adenoviral infection. Enalapril did not have an effect on TGF-ß1 expression or its signaling activity in sedentary or exercised dystrophic mice. Thus, ACE inhibition might improve muscle strength and decrease fibrosis by diminishing specifically CTGF expression and activity without affecting TGF-ß1 signaling. Our data provide insights into the pathogenic events in dystrophic muscle. We propose ACE as a target for developing therapies for DMD and related diseases.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Condicionamiento Físico Animal , Adenoviridae/genética , Infecciones por Adenoviridae , Angiotensina II/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Antihipertensivos/farmacología , Factor de Crecimiento del Tejido Conjuntivo/biosíntesis , Enalapril/farmacología , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular Animal/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Sistema Renina-Angiotensina , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/biosíntesis , Factor de Crecimiento Transformador beta1/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo
11.
Sci Adv ; 9(17): eade8184, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115930

RESUMEN

Rhabdomyosarcoma (RMS) is a common soft tissue sarcoma in children that resembles developing skeletal muscle. Unlike normal muscle cells, RMS cells fail to differentiate despite expression of the myogenic determination protein MYOD. The TWIST2 transcription factor is frequently overexpressed in fusion-negative RMS (FN-RMS). TWIST2 blocks differentiation by inhibiting MYOD activity in myoblasts, but its role in FN-RMS pathogenesis is incompletely understood. Here, we show that knockdown of TWIST2 enables FN-RMS cells to exit the cell cycle and undergo terminal myogenesis. TWIST2 knockdown also substantially reduces tumor growth in a mouse xenograft model of FN-RMS. Mechanistically, TWIST2 controls H3K27 acetylation at distal enhancers by interacting with the chromatin remodelers SMARCA4 and CHD3 to activate growth-related target genes and repress myogenesis-related target genes. These findings provide insights into the role of TWIST2 in maintaining an undifferentiated and tumorigenic state of FN-RMS and highlight the potential of suppressing TWIST2-regulated pathways to treat FN-RMS.


Asunto(s)
Rabdomiosarcoma , Sarcoma , Humanos , Animales , Ratones , Ensamble y Desensamble de Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Sarcoma/genética , Diferenciación Celular/genética , Línea Celular Tumoral , ADN Helicasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Represoras/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
12.
J Cell Mol Med ; 16(4): 752-64, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21645240

RESUMEN

Connective tissue growth factor (CTGF/CCN-2) is mainly involved in the induction of extracellular matrix (ECM) proteins. The levels of CTGF correlate with the degree and severity of fibrosis in many tissues, including dystrophic skeletal muscle. The CTGF overexpression in tibialis anterior skeletal muscle using an adenoviral vector reproduced many of the features observed in dystrophic muscles including muscle damage and regeneration, fibrotic response and decrease in the skeletal muscle strength. The renin-angiotensin system is involved in the genesis and progression of fibrotic diseases through its main fibrotic components angiotensin-II and its transducer receptor AT-1. The use of AT-1 receptor blockers (ARB) has been shown to decrease fibrosis. In this paper, we show the effect of AT-1 receptor blockade on CTGF-dependent biological activity in skeletal muscle cells as well as the response to CTGF overexpression in normal skeletal muscle. Our results show that in myoblasts ARB decreased CTGF-mediated increase of ECM protein levels, extracellular signal regulated kinases 1/2 (ERK-1/2) phosphorylation and stress fibres formation. In tibialis anterior muscle overexpressing CTGF using an adenovirus, ARB treatment decreased CTGF-mediated increase of ECM molecules, α-SMA and ERK-1/2 phosphorylation levels. Quite remarkable, ARB was able to prevent the loss of contractile force of tibialis anterior muscles overexpressing CTGF. Finally, we show that ARB decreased the levels of fibrotic proteins, CTGF and ERK-1/2 phosphorylation augmented in a dystrophic skeletal muscle from mdx mice. We propose that ARB is a novel pharmacological tool that can be used to decrease the fibrosis induced by CTGF in skeletal muscle associated with muscular dystrophies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Factor de Crecimiento del Tejido Conjuntivo/fisiología , Músculo Esquelético/patología , Distrofias Musculares/patología , Animales , Línea Celular , Fibrosis , Ratones
13.
J Pathol ; 225(4): 490-501, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21826667

RESUMEN

Muscular dystrophies are diseases characterized by muscle weakness together with cycles of degeneration and regeneration of muscle fibres, resulting in a progressive decrease of muscle mass, diminished muscle force generation and an increase in fibrosis. Fibrotic disorders are the endpoint of many chronic diseases in different tissues, where accumulation of the extracellular matrix (ECM) occurs. Connective tissue growth factor CTGF/CCN2, which is over-expressed in muscular dystrophies, plays a major role in many progressive scarring conditions. To test the hypothesis that CTGF might not only contribute conversion of already damaged muscle into scar tissue, but that it could by itself also directly contribute to skeletal muscle deterioration, we evaluated the effect of CTGF over-expression in tibialis anterior muscle of wild-type mice, using an adenovirus containing the CTGF mouse sequence (Ad-mCTGF). CTGF over-expression induced extensive skeletal muscle damage, which was followed by a massive regeneration of the damaged muscle, as evidenced by increased embryonic myosin and fibres with centrally located nuclei. It also induced strong fibrosis with increased levels of fibronectin, collagen, decorin and α-smooth muscle actin (α-SMA). Moreover, CTGF over-expression caused a decrease of the specific isometric contractile force. Strikingly, when CTGF over-expression stopped, the entire phenotype proved to be reversible, in parallel with normalization of CTGF levels. Thus, CTGF not merely acts downstream of muscle injury but also contributes directly to the deterioration of skeletal muscle phenotype and function. Moreover, normalization of expression levels led to spontaneous reversal of the CTGF-induced phenotype and to full recovery of muscle structure. These observations underscore the importance of CTGF in the pathophysiology of muscular dystrophies and suggest that targeting CTGF might have significant potential in the development of novel therapies for Duchenne muscular dystrophy and related diseases.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Adenoviridae/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Electromiografía , Fibrosis/metabolismo , Fibrosis/patología , Vectores Genéticos , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Regeneración
14.
Dev Cell ; 57(8): 959-973.e7, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35472321

RESUMEN

Noncompaction cardiomyopathy is a common congenital cardiac disorder associated with abnormal ventricular cardiomyocyte trabeculation and impaired pump function. The genetic basis and underlying mechanisms of this disorder remain elusive. We show that the genetic deletion of RNA-binding protein with multiple splicing (Rbpms), an uncharacterized RNA-binding factor, causes perinatal lethality in mice due to congenital cardiovascular defects. The loss of Rbpms causes premature onset of cardiomyocyte binucleation and cell cycle arrest during development. Human iPSC-derived cardiomyocytes with RBPMS gene deletion have a similar blockade to cytokinesis. Sequencing analysis revealed that RBPMS plays a role in RNA splicing and influences RNAs involved in cytoskeletal signaling pathways. We found that RBPMS mediates the isoform switching of the heart-enriched LIM domain protein Pdlim5. The loss of Rbpms leads to an abnormal accumulation of Pdlim5-short isoforms, disrupting cardiomyocyte cytokinesis. Our findings connect premature cardiomyocyte binucleation to noncompaction cardiomyopathy and highlight the role of RBPMS in this process.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Proteínas de Unión al ARN , Animales , Citocinesis , Ventrículos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
15.
Biochem Biophys Res Commun ; 410(3): 665-70, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21693104

RESUMEN

Fibrotic disorders are typified by excessive connective tissue and extracellular matrix (ECM) deposition that precludes normal healing processes in different tissues. Angiotensin-II (Ang-II) is involved in the fibrotic response. Several muscular dystrophies are characterized by extensive fibrosis. However, the exact role of Ang-II in skeletal muscle fibrosis is unknown. Here we show that myoblasts responded to Ang-II by increasing protein levels of connective tissue growth factor (CTGF/CCN2), collagen-III and fibronectin. These Ang-II-induced pro-fibrotic effects were mediated by AT-1 receptors. Remarkably, Ang-II induced reactive oxygen species (ROS) via a NAD(P)H oxidase-dependent mechanism, as shown by inhibition of ROS production via the NAD(P)H oxidase inhibitors diphenylene iodonium (DPI) and apocynin. This increase in ROS is critical for Ang-II-induced fibrotic effects, as indicated by the decrease in Ang-II-induced CTGF and fibronectin levels by DPI and apocynin. We also show that Ang-II-induced ROS production and fibrosis require PKC activity as indicated by the generic PKC inhibitor chelerythrine. These results strongly suggest that the fibrotic response induced by Ang-II is mediated by AT-1 receptor and requires NAD(P)H-induced ROS in skeletal muscle cells.


Asunto(s)
Angiotensina II/fisiología , Músculo Esquelético/patología , Distrofias Musculares/metabolismo , Mioblastos/patología , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Angiotensina II/farmacología , Animales , Células Cultivadas , Fibrosis , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Distrofias Musculares/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo
16.
Biochem Biophys Res Commun ; 413(3): 400-6, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21910975

RESUMEN

Niemann-Pick type C (NPC) disease is an autosomal recessive neurovisceral lipid storage disorder. The affected genes are NPC1 and NPC2. Mutations in either gene lead to intracellular cholesterol accumulation. There are three forms of the disease, which are categorized based on the onset and severity of the disease: the infantile form, in which the liver and spleen are severely affected, the juvenile form, in which the liver and brain are affected, and the adult form, which affects the brain. In mice, a spontaneous mutation in the Npc1 gene originated in the BALB/c inbred strain mimics the juvenile form of the disease. To study the influence of genetic background on the expression of NPC disease in mice, we transferred the Npc1 mutation from the BALB/c to C57BL/6J inbred background. We found that C57BL/6J-Npc1(-/-) mice present with a much more aggressive form of the disease, including a shorter lifespan than BALB/c-Npc1(-/-) mice. Surprisingly, there was no difference in the amount of cholesterol in the brains of Npc1(-/-) mice of either mouse strain. However, Npc1(-/-) mice with the C57BL/6J genetic background showed striking spleen damage with a marked buildup of cholesterol and phospholipids at an early age, which correlated with large foamy cell clusters. In addition, C57BL/6J Npc1(-/-) mice presented red cell abnormalities and abundant ghost erythrocytes that correlated with a lower hemoglobin concentration. We also found abnormalities in white cells, such as cytoplasmic granulation and neutrophil hypersegmentation that included lymphopenia and atypias. In conclusion, Npc1 deficiency in the C57BL6/J background is associated with spleen, erythrocyte, and immune system abnormalities that lead to a reduced lifespan.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Proteínas/genética , Bazo/patología , Animales , Plaquetas/patología , Progresión de la Enfermedad , Eritrocitos/patología , Péptidos y Proteínas de Señalización Intracelular , Longevidad/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/sangre , Tamaño de los Órganos/genética
17.
Nat Cell Biol ; 23(5): 467-475, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33941892

RESUMEN

Direct cardiac reprogramming of fibroblasts to cardiomyocytes presents an attractive therapeutic strategy to restore cardiac function following injury. Cardiac reprogramming was initially achieved through overexpression of the transcription factors Gata4, Mef2c and Tbx5; later, Hand2 and Akt1 were found to further enhance this process1-5. Yet, staunch epigenetic barriers severely limit the ability of these cocktails to reprogramme adult fibroblasts6,7. We undertook a screen of mammalian gene regulatory factors to discover novel regulators of cardiac reprogramming in adult fibroblasts and identified the histone reader PHF7 as the most potent activating factor8. Mechanistically, PHF7 localizes to cardiac super enhancers in fibroblasts, and through cooperation with the SWI/SNF complex, it increases chromatin accessibility and transcription factor binding at these sites. Furthermore, PHF7 recruits cardiac transcription factors to activate a positive transcriptional autoregulatory circuit in reprogramming. Importantly, PHF7 achieves efficient reprogramming in the absence of Gata4. Here, we highlight the underexplored necessity of cardiac epigenetic readers, such as PHF7, in harnessing chromatin remodelling and transcriptional complexes to overcome critical barriers to direct cardiac reprogramming.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Histonas/metabolismo , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Reprogramación Celular , Fibroblastos/metabolismo , Factor de Transcripción GATA4/genética , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
18.
Nat Commun ; 12(1): 5270, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489413

RESUMEN

Following injury, cells in regenerative tissues have the ability to regrow. The mechanisms whereby regenerating cells adapt to injury-induced stress conditions and activate the regenerative program remain to be defined. Here, using the mammalian neonatal heart regeneration model, we show that Nrf1, a stress-responsive transcription factor encoded by the Nuclear Factor Erythroid 2 Like 1 (Nfe2l1) gene, is activated in regenerating cardiomyocytes. Genetic deletion of Nrf1 prevented regenerating cardiomyocytes from activating a transcriptional program required for heart regeneration. Conversely, Nrf1 overexpression protected the adult mouse heart from ischemia/reperfusion (I/R) injury. Nrf1 also protected human induced pluripotent stem cell-derived cardiomyocytes from doxorubicin-induced cardiotoxicity and other cardiotoxins. The protective function of Nrf1 is mediated by a dual stress response mechanism involving activation of the proteasome and redox balance. Our findings reveal that the adaptive stress response mechanism mediated by Nrf1 is required for neonatal heart regeneration and confers cardioprotection in the adult heart.


Asunto(s)
Corazón/fisiología , Daño por Reperfusión Miocárdica/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Doxorrubicina/farmacología , Femenino , Hemo Oxigenasa (Desciclizante)/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Ratones Noqueados , Ratones Transgénicos , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/fisiología , Factor 1 Relacionado con NF-E2/genética , Oxidación-Reducción , Proteostasis , Ratas Sprague-Dawley , Regeneración
19.
Liver Int ; 30(6): 887-97, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20408952

RESUMEN

BACKGROUND/AIMS: Receptor-mediated endocytosis is a critical cellular mechanism for the uptake of lipoprotein cholesterol in the liver. Because Niemann-Pick C1 (NPC1) protein is a key component for the intracellular distribution of cholesterol originating from lipoprotein endocytosis, it may play an important role in controlling biliary cholesterol secretion and gallstone formation induced by a lithogenic diet. METHODS: We studied biliary cholesterol secretion, gallbladder lipid composition and gallstone formation in NPC1-deficient mice fed a low-fat lithogenic diet (1.5% cholesterol and 0.5% cholic acid) compared with control animals under the same diet. RESULTS: The lipid secretion response to the lithogenic diet was impaired in NPC1 (-/-) mice, leading to a decreased cholesterol output and an increased hepatic cholesterol concentration compared with the lithogenic diet-fed wild-type mice. A decreased cholesterol saturation index was found in the gallbladder bile of NPC1 (+/-) and (-/-) mice after lithogenic diet feeding. Consequently, mice with a partial or a total deficiency of NPC1 had a drastically lower frequency of gallbladder cholesterol crystals and a reduced prevalence of gallstones. CONCLUSION: Hepatic NPC1 expression is an important factor for regulating the biliary secretion of diet-derived cholesterol as well as for diet-induced cholesterol gallstone formation in mice.


Asunto(s)
Bilis/metabolismo , Colesterol en la Dieta/metabolismo , Cálculos Biliares/prevención & control , Hígado/metabolismo , Proteínas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Transporte Biológico , Colesterol 7-alfa-Hidroxilasa/genética , Ácido Cólico , Modelos Animales de Enfermedad , Cálculos Biliares/inducido químicamente , Cálculos Biliares/genética , Cálculos Biliares/metabolismo , Regulación de la Expresión Génica , Hidroximetilglutaril-CoA Reductasas/genética , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteína Niemann-Pick C1 , Proteínas/genética , ARN Mensajero/metabolismo , Receptores de LDL/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteínas de Transporte Vesicular/genética
20.
J Cell Commun Signal ; 12(1): 413-421, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28887614

RESUMEN

Connective tissue growth factor (CTGF/CCN2) has strong inflammatory and profibrotic activities. Its expression is enhanced in skeletal muscular dystrophies such as Duchenne muscular dystrophy (DMD), a myopathy characterized by exacerbated inflammation and fibrosis. In dystrophic tissue, necrotic-regenerative foci, myofibroblasts, newly-regenerated muscle fibers and necrosis all occur simultaneously. To determine if CCN2 is involved in the appearance of the foci, we studied their presence and characteristics in mdx mice (DMD mouse model) compared to mdx mice hemizygous for CCN2 (mdx-Ccn2+/-). We used laser capture microdissection followed by gene expression and immunofluorescence analyses to investigate fibrotic, inflammation and regeneration markers in damaged and non-damaged areas in mdx and mdx-Ccn2+/- skeletal muscle. Mdx mice foci express elevated mRNAs levels of transforming growth factor type beta, collagen, fibronectin, the myofribroblast marker α-SMA, and the myogenic transcription factor myogenin. Mdx foci also show elevated levels of MCP-1 and CD-68 positive cells, indicating that CCN2 could be inducing an inflammatory response. We found a significant reduction in the number of foci in mdx-Ccn2+/- mice muscle. Fibrotic and inflammatory markers were also decreased in these foci. We did not observe any difference in Pax7 mRNA levels, a marker for satellite cells, in mdx mice compared to mdx-Ccn2+/- mice. Thus, CCN2 appears to be involved in the fibrotic response as well as in the inflammatory response in the dystrophic skeletal muscle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA