Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36362011

RESUMEN

Manganese neurotoxicity has been reported to cause a neurodegenerative disease known as parkinsonism. Previous reports have shown that the expression of the KH-type splicing regulatory protein (KHSRP), a nucleic acid-binding protein, and NLRP3 is increased upon Mn exposure. However, the relation between these two during Mn toxicity has not been fully deduced. The mouse neuroblastoma (N2a) and SD rats are treated with LPS and MnCl2 to evaluate the expression of KHSRP and NLRP3. Further, the effect of the NLRP3 inhibitor MCC950 is checked on the expression of NLRP3, KHSRP and pro-inflammatory markers (TNFα, IL-18 and IL-1ß) as well as the caspase-1 enzyme. Our results demonstrated an increment in NLRP3 and KHSRP expression post-MnCl2 exposure in N2a cells and rat brain, while on the other hand with LPS exposure only NLRP3 expression levels were elevated and KHSRP was found to be unaffected. An increased expression of KHSRP, NLRP3, pro-inflammatory markers and the caspase-1 enzyme was observed to be inhibited with MCC950 treatment in MnCl2-exposed cells and rats. Manganese exposure induces NLRP3 and KHSRP expression to induce neuroinflammation, suggesting a correlation between both which functions in toxicity-related pathways. Furthermore, MCC950 treatment reversed the role of KHSRP from anti-inflammatory to pro-inflammatory.


Asunto(s)
Manganeso , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Animales , Ratones , Ratas , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Lipopolisacáridos/toxicidad , Manganeso/toxicidad , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/etiología , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/etiología , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley
2.
Molecules ; 27(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807437

RESUMEN

Enzymes that degrade pectin are called pectinases. Pectinases of microbial origin are used in juice clarification as the process is cost-effective. This study screened a pectinase-producing bacterium isolated from soil and identified as Bacillus subtilis 15A B-92 based on the 16S rRNA molecular technique. The purified pectinase from the isolate showed 99.6 U/mg specific activity and 11.6-fold purity. The molecular weight of the purified bacterial pectinase was 14.41 ± 1 kD. Optimum pectinase activity was found at pH 4.5 and 50 °C, and the enzyme was 100% stable for 3.5 h in these conditions. No enzymatic inhibition or activation effect was seen with Fe2+, Ca2+, or Mg2+. However, a slight inhibition was seen with Cu2+, Mn2+, and Zn2+. Tween 20 and 80 slightly inhibited the pectinase, whereas iodoacetic acid (IAA), ethylenediaminetetraacetate (EDTA), urea, and sodium dodecyl sulfate (SDS) showed potent inhibition. The bacterial pectinase degraded citrus pectin (100%); however, it was inactive in the presence of galactose. With citrus pectin as the substrate, the Km and Vmax were calculated as 1.72 mg/mL and 1609 U/g, respectively. The high affinity of pectinase for its substrate makes the process cost-effective when utilized in food industries. The obtained pectinase was able to clarify orange and apple juices, justifying its application in the food industry.


Asunto(s)
Bacillus subtilis , Poligalacturonasa , Bacillus subtilis/genética , Concentración de Iones de Hidrógeno , Poligalacturonasa/metabolismo , ARN Ribosómico 16S/genética , Temperatura
3.
Molecules ; 27(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268612

RESUMEN

Current drug discovery involves finding leading drug candidates for further development. New scientific approaches include molecular docking, ADMET studies, and molecular dynamic simulation to determine targets and lead compounds. Hepatitis B is a disease of concern that is a life-threatening liver infection. The protein considered for the study was HBx. The hepatitis B X-interacting protein crystal structure was obtained from the PDB database (PDB ID-3MSH). Twenty ligands were chosen from the PubChem database for further in silico studies. The present study focused on in silico molecular docking studies using iGEMDOCK. The triethylene glycol monoethyl ether derivative showed an optimum binding affinity with the molecular target HBx, with a high negative affinity binding energy of -59.02 kcal/mol. Lipinski's rule of five, Veber, and Ghose were followed in subsequent ADMET studies. Molecular dynamic simulation was performed to confirm the docking studies and to analyze the stability of the structure. In these respects, the triethylene glycol monoethyl ether derivative may be a promising molecule to prepare future hepatitis B drug candidates. Substantial research effort to find a promising drug for hepatitis B is warranted in the future.


Asunto(s)
Simulación del Acoplamiento Molecular
4.
Molecules ; 27(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364070

RESUMEN

Rice is the most important staple food crop feeding more than 50% of the world's population. Rice blast is the most devastating fungal disease, caused by Magnaporthe oryzae (M. oryzae) which is widespread in rice growing fields causing a significant reduction in the yield. The present study was initiated to evaluate the effect of green synthesized silver nanoparticles (AgNPs) on the biochemical constituents of rice plants infected with blast. AgNPs were synthesized by using Azadirachta indica leaf extract and their characterization was performed using UV-visible spectroscopy, particle size analyser (PSA), scanning electron microscope (SEM), and X-ray diffraction (XRD) which confirmed the presence of crystalline, spherical shaped silver nanoparticles with an average size of 58.9 nm. After 45 days of sowing, artificial inoculation of rice blast disease was performed. After the onset of disease symptoms, the plants were treated with AgNPs with different concentrations. Application of nanoparticles elevated the activity of antioxidative enzymes such as superoxide dismutase, catalase, peroxidase, glutathione reductase, and phenylalanine ammonia-lyase compared to control plants, and total phenol and reducing sugars were also elevated. The outcome of this study showed that an increase in all biochemical constituents was recorded for A. indica silver nanoparticles-treated plants. The highest values were recorded in 30 ppm and 50 ppm AgNPs-treated plants, which showed the highest resistance towards the pathogen. Green synthesized AgNPs can be used in future for disease control in susceptible varieties of rice. The synthesized AgNPs using A. indica leaf extract have shown promising antibacterial activity when tested against 14 multidrug-resistant (MDR) bacteria comprising Gram-negative bacteria Escherichia coli (n = 6) and Klebsiella pneumoniae (n = 7) with a good zone of inhibition diameter, tested with the disc diffusion method. Based on these findings, it appears that A. indica AgNPs have promise as an antibacterial agent effective against MDR pathogens.


Asunto(s)
Azadirachta , Nanopartículas del Metal , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli , Agua/farmacología
5.
Molecules ; 27(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35566068

RESUMEN

The applications of bioactive compounds from medicinal plants as therapeutic drugs are largely increasing. The present study selected the bioactive compounds from Acacia concinna (A. concinna) and Citrus limon (C. limon) to assess their phytochemicals, proteins, and biological activity. The plant material was collected, and extraction performed as per the standard procedure. Qualitative analysis was undertaken, and identification of functional organic groups was performed by FTIR and HPLC. Antibacterial, anticancer, antioxidant, antihyperglycemic, antihyperlipidemic, and inhibition kinetics studies for enzymes were performed to assess the different biological activities. Flavonoids and phenols were present in a significant amount in both the selected plants. A. concinna showed significant antimicrobial activity against Z. mobilis, E. coli, and S. aureus, with minimum inhibition zones (MIZ) of 24, 22, and 20 mm, respectively. C. limon strongly inhibited all the tested pathogenic bacteria with maximum and minimum MIZ of 32 and 17 mm. A. concinna silver nanoparticles also exhibited potent antimicrobial activity. Both extracts showed substantial antioxidant, antihyperlipidemic, antidiabetic, anticancer (MCF-7), and anti-urease (antiulcer) properties. To conclude, these plants can be used to treat hyperlipidemia, diabetes, cancer, and gastrointestinal ulcers. They can also serve as antimicrobial and antioxidant agents. Thus, the studied plants must be exploited cost-effectively to generate therapeutic drugs for various diseases.


Asunto(s)
Acacia , Antiinfecciosos , Citrus , Nanopartículas del Metal , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Citrus/química , Escherichia coli , Hipolipemiantes , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plata/farmacología , Staphylococcus aureus
6.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209180

RESUMEN

Bionanotechnology is a branch of science that has revolutionized modern science and technology. Nanomaterials, especially noble metals, have attracted researchers due to their size and application in different branches of sciences that benefit humanity. Metal nanoparticles can be synthesized using green methods, which are good for the environment, economically viable, and facilitate synthesis. Due to their size and form, gold nanoparticles have become significant. Plant materials are of particular interest in the synthesis and manufacture of theranostic gold nanoparticles (NPs), which have been generated using various materials. On the other hand, chemically produced nanoparticles have several drawbacks in terms of cost, toxicity, and effectiveness. A plant-mediated integration of metallic nanoparticles has been developed in the field of nanotechnology to overcome the drawbacks of traditional synthesis, such as physical and synthetic strategies. Nanomaterials' tunable features make them sophisticated tools in the biomedical platform, especially for developing new diagnostics and therapeutics for malignancy, neurodegenerative, and other chronic disorders. Therefore, this review outlines the theranostic approach, the different plant materials utilized in theranostic applications, and future directions based on current breakthroughs in these fields.


Asunto(s)
Oro , Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Nanomedicina Teranóstica/métodos , Fenómenos Químicos , Técnicas de Química Sintética , Desarrollo de Medicamentos , Oro/química , Tecnología Química Verde/métodos , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Nanotecnología , Extractos Vegetales/química , Plantas Medicinales/química , Análisis Espectral
7.
Saudi Pharm J ; 28(6): 692-697, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32550800

RESUMEN

BACKGROUND: Tabernaemontana alternifolia root is traditionally used and practiced among few Indian tribes as an antidote for snakebites. OBJECTIVE: To combat and neutralize Naja naja venom using methanolic root extract of Tabernaemontana alternifolia and to explore its efficacy on venom biomarkers in search of newer herbal antidote or first-aid-point of care for therapeutics.Materialization.Pharmacological activities such as fibrinogenolytic, direct and indirect hemolytic activities for the neutralization of the venom were evaluated. Lethal toxicity annulation studies were performed using the murine model by pre-incubation and post-treatment protocols. Further, the neutralization of edema and myotoxicity were also evaluated. RESULTS: Electrophoretic analysis revealed that the complete neutralization of fibrinogen degradation was observed at 1:10 (w/w) (venom to extract). T. alternifolia exhibited an effective dose (ED50) value of 87.20 µg/mL for venom-induced hemolysis. Venom at 2 µg concentration produced 11 mm of hemolytic radiance and was neutralized at 1:20 (w/w) venom to extract concentration. The survival time and the neurotoxic symptoms in mice were concluded to be delayed by both the methods of lethal toxicity inhibition using methanol extract. The edema ratio reduced the venom to extract ratio of 1:20 (w/w) from 173 ± 45% to 133.61% when subjected to 5 µg of venom concentration. The plant extract significantly neutralized the myotoxic activity. CONCLUSION: T. alternifolia methanolic root extract could be a potent contributor in the effective treatment of N. naja venom-induced toxicity.

8.
J Basic Microbiol ; 59(4): 375-384, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30681161

RESUMEN

In the present study, glucoamylase produced from a soil bacterium Paenibacillus amylolyticus NEO03 was cultured under submerged fermentation conditions. The extracellular enzyme was purified by starch adsorption chromatography and further by gel filtration, with 2.73-fold and recovery of 40.02%. The protein exhibited molecular mass of ∼66,000 Da as estimated by SDS-PAGE and depicted to be a monomer. The enzyme demonstrated optimum activity at pH range 6.0-7.0 and temperature range 30-40 °C. Glucoamylase was mostly activated by Mn2+ metal ions and depicted no dependency on Ca2+ ions. The enzyme preferentially hydrolyzed all the starch substrates. High substrate specificity was demonstrated towards soluble starch and kinetic values Km and Vmax were 2.84 mg/ml and 239.2 U/ml, respectively. The products of hydrolysis of soluble starch were detected by thin layer chromatography which showed only D -glucose, indicating a true glucoamylase. The secreted glucoamylase from P. amylolyticus strain possesses properties suitable for saccharification processes such as biofuel production.


Asunto(s)
Glucano 1,4-alfa-Glucosidasa/aislamiento & purificación , Glucano 1,4-alfa-Glucosidasa/metabolismo , Paenibacillus/enzimología , Medios de Cultivo , Glucano 1,4-alfa-Glucosidasa/química , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Peso Molecular , Almidón/metabolismo , Especificidad por Sustrato , Temperatura
9.
J Basic Microbiol ; 57(10): 803-813, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28731585

RESUMEN

Invertase or ß-D-fructofuranoside fructohydrolase (EC 3.2.1.26) was one of the foremost enzyme biocatalysts and established the primary concepts of most enzyme-kinetic principles. Invertases are glycoside hydrolases and occur mostly in microorganisms. Among microbial strains, for many decades yeast species have been extensively researched for invertase production, characterization, and applications in industries. Besides, limited literature is available on invertases from bacterial strains. The enzymic and molecular biological reports from bacterial invertases are scarce. In this minireview, occurrence, production, biochemical properties, and significance of transfructosylation of bacterial invertases are reported.


Asunto(s)
Bacterias/enzimología , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/metabolismo , Glicósido Hidrolasas/metabolismo , Cinética , Oligosacáridos/metabolismo , Edulcorantes , beta-Fructofuranosidasa/biosíntesis
10.
J Basic Microbiol ; 57(11): 974-981, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28857197

RESUMEN

Cyclomaltodextrin glucanotransferase is a unique enzyme that degrades starch into cyclic oligosaccharides called cyclodextrins, which have numerous applications in various industries such as pharmaceutical, textile, agricultural, cosmetics etc. Due to its wide applications, microorganism producing one type of cyclodextrin is of interest as it simplifies the down streaming process of separating mixture of cyclodextrins. In the present study, ß-CGTase was isolated from Bacillus flexus SV 1 and biochemically characterized. Enzyme was purified by starch adsorption followed by DEAE cellulose column chromatography which resulted in a fold purification of 6.1, with a yield of 44.07%. Molecular weight of the purified enzyme was found to be 96.68 kDa, enzyme was monomeric in nature with a Km and Vmax of 0.08976 µmol mL-1 and 585.1 µmol/ml/min, respectively. Optimum pH and temperature of the purified enzyme was found to be 8.0 and 60 °C. Ca2+ showed significant increase in enzyme activity. The inhibition of enzyme by EDTA indicates that CGTase is a metalloenzyme. CGTase produced majorly ß-CD and was alkalotolarent and active at high temperatures which is a promising candidate for various industries such as textile, food, agriculture, and pharmaceuticals.


Asunto(s)
Bacillus/enzimología , Glucosiltransferasas/química , Glucosiltransferasas/aislamiento & purificación , Ciclodextrinas/metabolismo , Activación Enzimática , Estabilidad de Enzimas , Fermentación , Calor , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Almidón/metabolismo , Temperatura
11.
Saudi Pharm J ; 24(3): 371-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27275129

RESUMEN

The aqueous extract of Mangifera indica is known to possess diverse medicinal properties, which also includes anti-snake venom activities. However, its inhibitory potency and mechanism of action on multi-toxic snake venom phospholipases A2s are still unknown. Therefore, the objective of this study was to evaluate the modulatory effect of standard aqueous bark extract of M. indica on NN-XIb-PLA2 of Indian cobra venom. The in vitro sPLA2, in situ hemolytic and in vivo edema inhibition effect were carried out as described. Also the effect of substrate and calcium concentration was carried out. M. indica extract dose dependently inhibited the GIA sPLA2 (NN-XIb-PLA2) activity with an IC50 value of 7.6 µg/ml. M. indica extract effectively inhibited the indirect hemolytic activity up to 98% at ∼40 µg/ml concentration. Further, M. indica extract (0-50 µg/ml) inhibited the edema formed in a dose dependent manner. When examined as a function of increased substrate and calcium concentration, there was no relieve of inhibitory effect of M. indica extract on the NN-XIb-PLA2. Further, the inhibition was irreversible as evident from binding studies. The in vitro inhibition is well correlated with in situ and in vivo edema inhibiting activities of M. indica. As the inhibition is independent of substrate and calcium and was irreversible, it can be concluded that M. indica extract mode of inhibition could be due to direct interaction of components present in the extract with the PLA2 enzyme. The aqueous extract of M. indica effectively inhibits svPLA2 enzymatic and its associated toxic activities, which substantiate their anti-snake venom properties. Further in-depth studies on the role and mechanism of the principal constituents present in the extract, responsible for the anti-PLA2 activity will be interesting to develop them into potent antisnake component and also as an anti-inflammatory agent.

12.
J Basic Microbiol ; 55(10): 1149-58, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26011283

RESUMEN

Most of the detergents that are presently produced contain the detergent compatible enzymes to improve and accelerate the washing performance by removing tough stains. The process is environment friendly as the use of enzymes in the detergent formulation reduces the utilization of toxic detergent constituents. The current trend is to use the detergent compatible enzymes that are active at low and ambient temperature in order to save energy and maintain fabric quality. As the detergent compatible bacterial enzymes are used together in the detergent formulation, it is important to co-produce the detergent enzymes in a single fermentation medium as the enzyme stability is assured, and production cost gets reduced enormously. The review reports on the production, purification, characterization and application of detergent compatible amylases, lipases, and proteases are available. However, there is no specific review or minireview on the concomitant production of detergent compatible amylases, lipases, and proteases. In this minireview, the coproduction of detergent compatible enzymes by bacterial species, enzyme stability towards detergents and detergent components, and stain release analysis were discussed.


Asunto(s)
Colorantes , Detergentes/metabolismo , Estabilidad de Enzimas , Amilasas/metabolismo , Bacterias/enzimología , Colorantes/química , Activación Enzimática , Fermentación , Lipasa/metabolismo , Péptido Hidrolasas/metabolismo , Temperatura
13.
Methods Mol Biol ; 2761: 135-148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427235

RESUMEN

Pharmaceutical drugs, natural toxins, industrial chemicals, and various environmental toxins negatively impact the nervous system. A significant cause of many neurodegenerative diseases is neurotoxicity. Although trace amounts of heavy metals are required for the proper functioning of several metabolic pathways, their dysregulation can cause many cellular and molecular alterations, which can enhance the risks associated with several neurodegenerative diseases. For example, high levels of heavy metals like manganese (Mn) affect the central nervous system with implications in both higher-order cognitive and motor functions. In addition, the buildup of amyloid aggregates and metal ions in the brain of patients with Alzheimer's disease is associated with disease pathogenesis. Small molecules capable of targeting neuroinflammation and neuroprotection pathways would be valuable to elucidate the pathological pathways associated with metal toxicity in neurogenerative disease. This chapter will summarize the necessary steps involved in (1) culturing of cell lines and maintenance of animal models, (2) design and preparation of samples of small molecules and treatment methodologies, (3) RNA and protein isolation and preparation of tissue and cell culture samples for quantitative studies, and (4) quantitative estimation of cellular products.


Asunto(s)
Enfermedad de Alzheimer , Metales Pesados , Enfermedades Neurodegenerativas , Síndromes de Neurotoxicidad , Animales , Humanos , Enfermedades Neuroinflamatorias , Metales Pesados/toxicidad , Enfermedades Neurodegenerativas/metabolismo
14.
Methods Mol Biol ; 2761: 209-229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427239

RESUMEN

Omega-3 fatty acids play a seminal role in maintaining the structural and functional integrity of the nervous system. These specialized molecules function as precursors for many lipid-based biological messengers. Also, studies suggest the role of these fatty acids in regulating healthy sleep cycles, cognitive ability, brain development, etc. Dietary intake of essential poly unsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are foundational to the optimal working of the nervous system. Besides regulating health, these biomolecules have great therapeutic value in treating several diseases, particularly nervous system diseases and disorders. Many recent studies conclusively demonstrated the beneficial effects of Omega-3 fatty acids in treating depression, neuropsychiatric disorders, neurodegenerative disorders, neurochemical disorders, and many other illnesses associated with the nervous system. This chapter summates the multifaceted role of poly unsaturated fatty acids, especially Omega-3 fatty acids (EPA and DHA), in the neuronal health and functioning. The importance of dietary intake of these essential fatty acids, their recommended dosages, bioavailability, the mechanism of their action, and therapeutic values are extensively discussed.


Asunto(s)
Ácidos Grasos Omega-3 , Ácidos Grasos Omega-3/farmacología , Ácido Eicosapentaenoico/farmacología , Ácidos Docosahexaenoicos/farmacología , Ácidos Grasos Insaturados , Ácidos Grasos , Encéfalo
15.
J Biomol Struct Dyn ; 41(16): 7700-7711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36165602

RESUMEN

Superbugs producing New Delhi metallo-ß-lactamase 1 (NDM-1) enzyme is a growing crisis, that is adversely affecting the global health care system. NDM-1 empowers the bacteria to inactivate entire arsenal of ß-lactam antibiotics including carbapenem (the last resort antibiotic) and remains ineffective to all the available ß lactamase inhibitors used in the clinics. Limited therapeutic option available for rapidly disseminating NDM-1 producing bacteria makes it imperative to identify a potential inhibitor for NDM-1 enzyme. With drug repurposing approach, in this study, we used virtual screening of available Food and Drug Administration (FDA) approved chemical library (ZINC12 database) and captured 'adapalene' (FDA drug) as a potent inhibitor candidate for NDM-1 enzyme. Active site docking with NDM-1, showed adapalene with binding energy -9.21 kcal/mol and interacting with key amino acid residues (Asp124, His122, His189, His250, Cys208) in the active site of NDM-1. Further, molecular dynamic simulation of NDM-1 docked with the adapalene at 100 ns displayed a stable conformation dynamic, with relative RMSD and RMSF in the acceptable range. Subsequently, in vitro enzyme assays using recombinant NDM-1 protein demonstrated inhibition of NDM-1 by adapalene. Further, the combination of adapalene plus meropenem (carbapenem antibiotic) showed synergistic effect against the NDM-1 producing carbapenem (meropenem) resistant clinical isolates (Escherichia coli and Klebsiella pneumoniae). Overall, our data indicated that adapalene can be a potential inhibitor candidate for NDM-1 enzyme that can contribute to the development of a suitable adjuvant to save the activity of carbapenem antibiotic against infections caused by NDM-1 positive gram-negative bacteria. Communicated by Ramaswamy H. Sarma.

16.
Heliyon ; 9(6): e16493, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37251455

RESUMEN

In this study, a polygalacturonase (PGase) producing bacterial strain was isolated and identified as Pseudomonas sp. 13159349 from fruit market soils, and TLC analysis confirmed its pectinolytic activity. Additionally, SSF, Plackett-Burman design (PB), and response surface methodology (RSM) were used to optimize the production of this thermostable and alkalophilic PGase. Wheat bran demonstrated the highest activity (60.13 ± 3.39 U/gm) among the various agricultural wastes used as solid substrates. To further enhance the enzyme production, statistical optimization of media components was investigated using the PB design. Among the 11 variables tested, pH (p < 0.0001), inoculum size (p < 0.0001), incubation time (p < 0.0001), and temperature (p < 0.0041) were found to have a positive effect on the production. The interaction and concentration of the selected factors were examined by RSM, which demonstrated the optimal conditions for maximum production (315.65 U/gm) of the enzyme using wheat bran as the solid substrate were pH 10.5, 61-66 h of incubation, and 6-7.5% inoculum size. The model was highly significant, with a p-value of <0.0001, an F-value of 95.33, and a low CV of 2.31. The RSM model was validated by a laboratory-scale experiment showing 30600 ± 400.32 U/100 gm PGase activity. Thus, SSF and the statistical design of media components resulted in a significant 5.2-fold increase in PGase output solely by using agro waste and optimizing the physical parameters, making this a highly cost-effective bioprocess.

17.
ACS Omega ; 8(11): 9947-9961, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36969450

RESUMEN

The cost-effective novel Ag-doped (1-7%) (CuO-Cu2O)Cu (C3) heterostructured nanocomposites are successfully synthesized by the facile solution combustion process using the Leucas aspera extract as a green fuel. The structural properties of fabricated nanocomposites were well-characterized by specific spectral techniques for enhanced electrochemical sensor detection, antibacterial activities, and sunlight-driven photocatalytic dye decoloration studies. The existence of Ag+ ions has been confirmed by the appearance of two peaks of Ag 3d5/2 (367.9 eV) and Ag 3d3/2 (373.9 eV), with the chemical binding nature and exchange of the Ag+ state in the nanocomposite lattice as revealed by X-ray photoelectron spectroscopy analysis. The energy band gap value of the doped nanocomposite decreases from 2.2 to 1.8 eV, as measured by the UV-visible absorption spectral technique, hindering the recombination of electron-holes pairs by trapping e- and h+. This result supports that the C3Ag5 nanocomposite has a great potential as a sunlight photocatalyst toward the Alizarin Red (AR) dye, for which an excellent degradation activity of 98% at 180 min was achieved compared to that of the host nanocomposite (78% at 180 min). The variation of redox peak potentials of the prepared graphite nanocomposite working electrode is an effective tool for paracetamol sensing activity in 0.1 M KCl using electrochemical spectral studies. In addition, the antibacterial activities of the C3Ag5 nanocomposite against Escherichia coli and Staphylococcus aureus were successfully studied. The C3Ag5 nanocomposite exhibited a better performance than C3. The increase in activity is attributed to the presence of Ag as a dopant.

18.
J Biomol Struct Dyn ; 40(4): 1659-1670, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33050786

RESUMEN

Dysbiosis is a major cause of disease in an individual, generally initiated in the gastrointestinal tract. The gut, also known as the second brain, constitutes a major role in immune signaling. To study the immunity cascade, the Drosophila model was considered targeting the Imd pathway receptor (2F2L) located in the midgut. This receptor further initiates the immune signaling mechanism influenced by bacteria. To inhibit the Imd pathway, the crystal structure of Imd with PDB: 2F2L was considered for the screening of suitable ligand/inhibitor. In light of our previous studies, repurposing of anti-diabetic ligands from the banana plant namely lupeol (LUP), stigmasterol (STI), ß-sitosterol (BST) and umbelliferone (UMB) were screened. This study identifies the potential inhibitor along with the tracheal toxin (TCT), a major peptidoglycan constituent of microbes. The molecular docking and molecular dynamics simulation of complexes 2F2L-MLD, 2F2L- CAP, 2F2L-LUP, 2F2L-BST, 2F2L-STI and 2F2L-UMB elucidates the intermolecular interaction into the inhibitory property of ligands. The results of this study infer LUP and UMB as better ligands with high stability and functionality among the screened candidates. This study provides insights into the dysbiosis and its amelioration by plant-derived molecules. The identified drugs (LUP & UMB) will probably act as an inhibitor against microbial dysbiosis and other related pathogenesis (diabetes and diabetic neuropathy). Further, this study will widen avenues in fly biology research and which could be used as a therapeutic model in the rapid, reliable and reproducible screening of phytobiologics in complementary and alternative medicine for various lifestyle associated complications.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiología , Reposicionamiento de Medicamentos , Inmunidad Innata , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
19.
Antibiotics (Basel) ; 11(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36358157

RESUMEN

An estimated 35% of the world's population depends on wheat as their primary crop. One fifth of the world's wheat is utilized as animal feed, while more than two thirds are used for human consumption. Each year, 17-18% of the world's wheat is consumed by China and India. In wheat, spot blotch caused by Bipolaris sorokiniana is one of the major diseases which affects the wheat crop growth and yield in warmer and humid regions of the world. The present work was conducted to evaluate the effect of green synthesized silver nanoparticles on the biochemical constituents of wheat crops infected with spot blotch disease. Silver nanoparticles (AgNPs) were synthesized using Mangifera indica leaf extract and their characterization was performed using UV-visible spectroscopy, SEM, XRD, and PSA. Characterization techniques confirm the presence of crystalline, spherical silver nanoparticles with an average size of 52 nm. The effect of green synthesized nanoparticles on antioxidative enzymes, e.g., Superoxide dismutase (SOD), Catalase (CAT), Glutathione Reductase (GR), Peroxidase (POX), and phytochemical precursor enzyme Phenylalanine Ammonia-Lyase (PAL), and on primary and secondary metabolites, e.g., reducing sugar and total phenol, in Bipolaris sorokiniana infected wheat crop were studied. Inoculation of fungal spores was conducted after 40 days of sowing. Subsequently, diseased plants were treated with silver nanoparticles at different concentrations. Elevation in all biochemical constituents was recorded under silver nanoparticle application. The treatment with a concentration of nanoparticles at 50 pp min diseased plants showed the highest resistance towards the pathogen. The efficacy of the green synthesized AgNPs as antibacterial agents was evaluated against multi drug resistant (MDR) bacteria comprising Gram-negative bacteria Escherichia coli (n = 6) and Klebsiella pneumoniae (n = 7) and Gram-positive bacteria Methicillin resistant Staphylococcus aureus (n = 2). The results show promising antibacterial activity with significant inhibition zones observed with the disc diffusion method, thus indicating green synthesized M. indica AgNPs as an active antibacterial agent against MDR pathogens.

20.
Curr Opin Biotechnol ; 69: 68-76, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33388493

RESUMEN

Enzymes are biocatalysts that speed up the chemical reaction to obtain the final valuable product/s. Biotechnology has revolutionized the use of traditional enzymes to be applicable in industries such as food, beverage, personal and household care, agriculture, bioenergy, pharmaceutical, and various other segments. With respect to the exponential growth of enzymes in biotech industries, it becomes important to highlight the advancements and impact of enzyme technology over recent years. In this review article, we discuss the existing and emerging production approaches, applications, developments, and global need for enzymes. Special emphasis is given to the predominantly utilized hydrolytic microbial enzymes in industrial bioprocesses.


Asunto(s)
Biotecnología , Industrias , Enzimas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA