Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nano Lett ; 23(8): 3224-3230, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37125440

RESUMEN

The application of CdSe nanoplatelets (NPLs) in the ultraviolet/blue region remains an open challenge due to charge trapping typically leading to limited photoluminescence quantum efficiency (PL QE) and sub-bandgap emission in core-only NPLs. Here, we synthesized 3.5 monolayer core/crown CdSe/CdS NPLs with various crown dimensions, exhibiting saturated blue emission and PL QE up to 55%. Compared to core-only NPLs, the PL intensity decays monoexponentially over two decades due to suppressed deep trapping and delayed emission. In both core-only and core/crown NPLs we observe biexciton-mediated optical gain between 470 and 510 nm, with material gain coefficients up to 7900 cm-1 and consistently lower gain thresholds in crowned NPLs. Gain lifetimes are limited to 40 ps, due to residual ultrafast trapping and higher exciton densities at threshold. Our results provide guidelines for rational optimization of thin CdSe NPLs toward lighting and light-amplification applications.

2.
Nano Lett ; 22(23): 9537-9543, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36409988

RESUMEN

Colloidal CdSe nanoplatelets (NPLs) are unique systems to study two-dimensional excitons and excitonic complexes. However, while absorption and emission of photons through exciton formation and recombination have been extensively quantified, few studies have addressed the exciton-biexciton transition. Here, we use cross-polarized pump-probe spectroscopy to measure the absorption coefficient spectrum of this transition and determine the biexciton oscillator strength (fBX). We show that fBX is independent of the NPL area and that the concomitant biexciton area (SBX) agrees with predictions of a short-range interaction model. Moreover, we show that fBX is comparable to the oscillator strength of forming localized excitons at room temperature while being unaffected itself by center-of-mass localization. These results confirm the relevance of biexcitons for light-matter interaction in NPLs. Moreover, the quantification of the exciton-biexciton transition introduced here will enable researchers to rank 2D materials by the strength of this transition and to compare experimental results with theoretical predictions.


Asunto(s)
Compuestos de Cadmio , Compuestos de Selenio , Fotones
3.
Nano Lett ; 22(22): 8900-8907, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36331389

RESUMEN

Colloidal CdTe nanoplatelets featuring a large absorption coefficient and ultrafast tunable luminescence coupled with heavy-metal-based composition present themselves as highly desirable candidates for radiation detection technologies. Historically, however, these nanoplatelets have suffered from poor emission efficiency, hindering progress in exploring their technological potential. Here, we report the synthesis of CdTe nanoplatelets possessing a record emission efficiency of 9%. This enables us to investigate their fundamental photophysics using ultrafast transient absorption, temperature-controlled photoluminescence, and radioluminescence measurements, elucidating the origins of exciton- and defect-related phenomena under both optical and ionizing excitation. For the first time in CdTe nanoplatelets, we report the cumulative effects of a giant oscillator strength transition and exciton fine structure. Simultaneously, thermally stimulated luminescence measurements reveal the presence of both shallow and deep trap states and allow us to disclose the trapping and detrapping dynamics and their influence on the scintillation properties.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Cadmio/química , Telurio/química , Luminiscencia
4.
Nano Lett ; 21(23): 10062-10069, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34842440

RESUMEN

Colloidal CdSe quantum rings (QRs) are a recently developed class of nanomaterials with a unique topology. In nanocrystals with more common shapes, such as dots and platelets, the photophysics is consistently dominated by strongly bound electron-hole pairs, so-called excitons, regardless of the charge carrier density. Here, we show that charge carriers in QRs condense into a hot uncorrelated plasma state at high density. Through strong band gap renormalization, this plasma state is able to produce broadband and sizable optical gain. The gain is limited by a second-order, yet radiative, recombination process, and the buildup is counteracted by a charge-cooling bottleneck. Our results show that weakly confined QRs offer a unique system to study uncorrelated electron-hole dynamics in nanoscale materials.

5.
Nano Lett ; 21(24): 10525-10531, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34874734

RESUMEN

Colloidal semiconductor nanoplatelets exhibit strong quantum confinement for electrons and holes as well as excitons in one dimension, while their in-plane motion is free. Because of the large dielectric contrast between the semiconductor and its ligand environment, the Coulomb interaction between electrons and holes is strongly enhanced. By means of one- and two-photon photoluminescence excitation spectroscopy, we measure the energies of the 1S and 1P exciton states in CdSe nanoplatelets with thicknesses varied from 3 up to 7 monolayers. By comparison with calculations, performed in the effective mass approximation with account of the dielectric enhancement, we evaluate exciton binding energies of 195-315 meV, which is about 20 times greater than that in bulk CdSe. Our calculations of the effective Coulomb potential for very thin nanoplatelets are close to the Rytova-Keldysh model, and the exciton binding energies are comparable with the values reported for monolayer-thick transition metal dichalcogenides.

6.
Nano Lett ; 21(4): 1702-1708, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33544602

RESUMEN

Semiconductor nanoplatelets, which offer a compelling combination of the flatness of two-dimensional semiconductors and the inherent richness brought about by colloidal nanostructure synthesis, form an ideal and general testbed to investigate fundamental physical effects related to the dimensionality of semiconductors. With low temperature scanning tunnelling spectroscopy and tight binding calculations, we investigate the conduction band density of states of individual CdSe nanoplatelets. We find an occurrence of peaks instead of the typical steplike function associated with a quantum well, that rule out a free in-plane electron motion, in agreement with the theoretical density of states. This finding, along with the detection of deep trap states located on the edge facets, which also restrict the electron motion, provides a detailed picture of the actual lateral confinement in quantum wells with finite length and width.

7.
Nano Lett ; 20(5): 2941-2942, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32243174

RESUMEN

Progression from random orientation of 2D CdSe nanoplatelets to ordered close-packed thin films enables us to exploit the in-plane dipole moment of the band-edge transition on a macroscopic scale and gain control over the direction of charge and energy transport within the film. Momper et al. show how this can be achieved by tuning the solvent evaporation rate during deposition. They are able to switch from thermodynamically to kinetically controlled conditions for the film formation, resulting in ordered films with either face-down or edge-up alignment of the 2D nanoplatelets.

8.
Small ; 15(52): e1904670, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31788951

RESUMEN

Among the large family of transition metal dichalcogenides, recently ReS2 has stood out due to its nearly layer-independent optoelectronic and physicochemical properties related to its 1T distorted octahedral structure. This structure leads to strong in-plane anisotropy, and the presence of active sites at its surface makes ReS2 interesting for gas sensing and catalysts applications. However, current fabrication methods use chemical or physical vapor deposition (CVD or PVD) processes that are costly, time-consuming and complex, therefore limiting its large-scale production and exploitation. To address this issue, a colloidal synthesis approach is developed, which allows the production of ReS2 at temperatures below 360 °C and with reaction times shorter than 2h. By combining the solution-based synthesis with surface functionalization strategies, the feasibility of colloidal ReS2 nanosheet films for sensing different gases is demonstrated with highly competitive performance in comparison with devices built with CVD-grown ReS2 and MoS2 . In addition, the integration of the ReS2 nanosheet films in assemblies together with carbon nanotubes allows to fabricate electrodes for electrocatalysis for H2 production in both acid and alkaline conditions. Results from proof-of-principle devices show an electrocatalytic overpotential competitive with devices based on ReS2 produced by CVD, and even with MoS2 , WS2 , and MoSe2 electrocatalysts.

9.
Nanotechnology ; 30(40): 405204, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31272086

RESUMEN

PbS colloidal quantum dots (QDs) are a promising material for the realization of low-cost, high-responsivity near-infrared photodetectors. Previously reported attempts showed high responsivity but a fast performance decay in air-exposed devices, demanding encapsulation of the photodetectors. Conversely, devices with very high air stability have been demonstrated but the low trap-state density hinders photoconductive gain and reduces overall responsivity. In this paper, photoconductive devices prepared with partially tetrabutylammonium iodide exchanged PbS QDs are presented with enhanced air stability and high responsivity at low voltage, low optical power.

10.
Nano Lett ; 18(10): 6248-6254, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30178676

RESUMEN

Current colloidal synthesis methods for CdSe nanoplatelets (NPLs) routinely yield samples that emit, in discrete steps, from 460 to 550 nm. A significant challenge lies with obtaining thicker NPLs, to further widen the emission range. This is at present typically achieved via colloidal atomic layer deposition onto CdSe cores, or by synthesizing NPL core/shell structures. Here, we demonstrate a novel reaction scheme, where we start from 4.5 monolayer (ML) NPLs and increase the thickness in a two-step reaction that switches from 2D to 3D growth. The key feature is the enhancement of the growth rate of basal facets by the addition of CdCl2, resulting in a series of nearly monodisperse CdSe NPLs with thicknesses between 5.5 and 8.5 ML. Optical characterization yielded emission peaks from 554 nm up to 625 nm with a line width (fwhm) of 9-13 nm, making them one of the narrowest colloidal nanocrystal emitters currently available in this spectral range. The NPLs maintained a short emission lifetime of 5-11 ns. Finally, due to the increased red shift of the NPL band edge photoluminescence excitation spectra revealed several high-energy peaks. Calculation of the NPL band structure allowed us to identify these excited-state transitions, and spectral shifts are consistent with a significant mixing of light and split-off hole states. Clearly, chloride ions can add a new degree of freedom to the growth of 2D colloidal nanocrystals, yielding new insights into both the NPL synthesis as well as their optoelectronic properties.

11.
Nano Lett ; 16(11): 7137-7141, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27737546

RESUMEN

Colloidal semiconductor nanoplatelets exhibit quantum size effects due to their thickness of only a few monolayers, together with strong optical band-edge transitions facilitated by large lateral extensions. In this article, we demonstrate room temperature strong coupling of the light and heavy hole exciton transitions of CdSe nanoplatelets with the photonic modes of an open planar microcavity. Vacuum Rabi splittings of 66 ± 1 meV and 58 ± 1 meV are observed for the heavy and light hole excitons, respectively, together with a polariton-mediated hybridization of both transitions. By measuring the concentration of platelets in the film, we compute the transition dipole moment of a nanoplatelet exciton to be µ = (575 ± 110) D. The large oscillator strength and fluorescence quantum yield of semiconductor nanoplatelets provide a perspective toward novel photonic devices by combining polaritonic and spinoptronic effects.

12.
Phys Rev Lett ; 116(11): 116802, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-27035317

RESUMEN

We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k·p calculations-all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness.

13.
Chem Soc Rev ; 44(16): 5897-914, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26084788

RESUMEN

Colloidal nanocrystals - produced in a growing variety of shapes, sizes and compositions - are rapidly developing into a new generation of photonic materials, spanning light emitting as well as energy harvesting applications. Precise tailoring of their optoelectronic properties enables them to satisfy disparate application-specific requirements. However, the presence of toxic heavy metals such as cadmium and lead in some of the most mature nanocrystals is a serious drawback which may ultimately preclude their use in consumer applications. Although the pursuit of non-toxic alternatives has occurred in parallel to the well-developed Cd- and Pb-based nanocrystals, synthetic challenges have, until recently, curbed progress. In this review, we highlight recent advances in the development of heavy-metal-free nanocrystals within the context of specific photonic applications. We also describe strategies to transfer some of the advantageous nanocrystal features such as shape control to non-toxic materials. Finally, we present recent developments that have the potential to make substantial impacts on the quest to attain a balance between performance and sustainability in photonics.

14.
Nano Lett ; 15(8): 4985-92, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26190135

RESUMEN

We report a comprehensive study on the two-photon absorption cross sections of colloidal CdSe nanoplatelets, -rods, and -dots of different sizes by the means of z-scan and two-photon excitation spectroscopy. Platelets combine large particle volumes with ultra strong confinement. In contrast to weakly confined nanocrystals, the TPA cross sections of CdSe nanoplatelets scale superlinearly with volume (V(∼2)) and show ten times more efficient two-photon absorption than nanorods or dots. This unexpectedly strong shape dependence goes well beyond the effect of local fields. The larger the particles' aspect ratio, the greater is the confinement related electronic contribution to the increased two-photon absorption. Both electronic confinement and local field effects favor the platelets and make them unique two-photon absorbers with outstanding cross sections of up to 10(7) GM, the largest ever reported for (colloidal) semiconductor nanocrystals and ideally suited for two-photon imaging and nonlinear optoelectronics. The obtained results are confirmed by two independent techniques as well as a new self-referencing method.

15.
Nano Lett ; 15(8): 5455-64, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26198761

RESUMEN

Colloidal quantum dots (QDs) are emerging as true candidates for light-emitting diodes with ultrasaturated colors. Here, we combine CdSe/CdS dot-in-rod heterostructures and polar/polyelectrolytic conjugated polymers to demonstrate the first example of fully solution-based quantum dot light-emitting diodes (QD-LEDs) incorporating all-organic injection/transport layers with high brightness, very limited roll-off and external quantum efficiency as high as 6.1%, which is 20 times higher than the record QD-LEDs with all-solution-processed organic interlayers and exceeds by over 200% QD-LEDs embedding vacuum-deposited organic molecules.

16.
Small ; 11(11): 1328-34, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25335769

RESUMEN

Core-shell CdSe/CdS nanocrystals are a very promising material for light emitting applications. Their solution-phase synthesis is based on surface-stabilizing ligands that make them soluble in organic solvents, like toluene or chloroform. However, solubility of these materials in water provides many advantages, such as additional process routes and easier handling. So far, solubilization of CdSe/CdS nanocrystals in water that avoids detrimental effects on the luminescent properties poses a major challenge. This work demonstrates how core-shell CdSe/CdS quantum dot-in-rods can be transferred into water using a ligand exchange method employing mercaptopropionic acid (MPA). Key to maintaining the light-emitting properties is an enlarged CdS rod diameter, which prevents potential surface defects formed during the ligand exchange from affecting the photophysics of the dot-in-rods. Films made from water-soluble dot-in-rods show amplified spontaneous emission (ASE) with a similar threshold (130 µJ/cm(2)) as the pristine material (115 µJ/cm(2)). To demonstrate feasibility for lasing applications, self-assembled microlasers are fabricated via the "coffee-ring effect" that display single-mode operation and a very low threshold of ∼10 µJ/cm(2). The performance of these microlasers is enhanced by the small size of MPA ligands, enabling a high packing density of the dot-in-rods.

17.
Nanoscale ; 16(12): 6268-6277, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38450545

RESUMEN

Several established procedures are now available to prepare zinc blende CdSe nanoplatelets. While these protocols allow for detailed control over both thickness and lateral dimensions, the chemistry behind their formation is yet to be unraveled. In this work, we discuss the influence of the solvent on the synthesis of nanoplatelets. We confirmed that the presence of double bonds, as is the case for 1-octadecene, plays a key role in the evolution of nanoplatelets, through the isomerization of the alkene, as confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry. Consequently, 1-octadecene can be replaced as a solvent (or solvent mixture), however, only by one that also contains α protons to CC double bonds. We confirm this via synthesis of nanoplatelets in hexadecane spiked with a small amount of 1-octadecene, and in the aromatic solvent 1,2,3,4-tetrahydronaphthalene (tetralin). At the same time, the chemical reaction leading to the formation of nanoplatelets occurs to some extent in saturated solvents. A closer examination revealed that an alternative formation pathway is possible, through interaction of carboxylic acids, such as octanoic acid, with selenium. Next to shedding more light on the synthesis of CdSe nanoplatelets, fundamental understanding of the precursor chemistry paves the way to use optimized solvent admixtures as an additional handle to control the nanoplatelet synthesis, as well as to reduce potential self-polymerization hurdles observed with 1-octadecene.

18.
J Am Chem Soc ; 135(33): 12270-8, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23865842

RESUMEN

We present the synthesis of novel disk-shaped hexagonal Cu2Te nanocrystals with a well-defined stoichiometric composition and tunable diameter and thickness. Subsequent cation exchange of Cu to Cd at high temperature (180 °C) results in highly fluorescent CdTe nanocrystals, with less than 1 mol % of residual Cu remaining in the lattice. The procedure preserves the overall disk shape, but is accompanied by a substantial reconstruction of the anion sublattice, resulting in a reorientation of the c-axis from the surface normal in Cu2Te into the disk plane in CdTe nanodisks. The synthesized CdTe nanodisks show a continuously tunable photoluminescence (PL) peak position, scaling with the thickness of the disks. The PL lifetime further confirms that the CdTe PL arises from band-edge exciton recombination; that is, no Cu-related emission is observed. On average, the recombination rate is about 25-45% faster with respect to their spherical quantum dots counterparts, opening up the possibility to enhance the emission rate at a given wavelength by controlling the nanocrystal shape. Finally, with a PL quantum efficiency of up to 36% and an enhanced PL stability under ambient conditions due to a monolayer of CdS formed on the nanocrystal surface during cation exchange, these flat quantum disks form an interesting enrichment to the current family of highly fluorescent, shape-controlled nanocrystals.

19.
Nano Lett ; 12(10): 5224-9, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23016932

RESUMEN

Exciton dynamics within the band-edge state manifold of CdSe/ZnS and CdSe/CdS quantum dots (QDs) have been investigated. Low-temperature time-resolved photoluminescence (PL) experiments demonstrate that exciton relaxation is mediated by LO phonons, whereas an acoustic phonon bottleneck is observed for splitting energies lower than the optical phonon energy. This has important implications since the main source affecting exciton dephasing is considered to be a spin-flip process. Our results concur with recent observations of long exciton dephasing times in CdSe/CdS QDs and show a way to engineer nanoparticles with enhanced coherence time, a prerequisite for their use in quantum optical applications.

20.
Nanoscale ; 15(4): 1645-1651, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36597874

RESUMEN

Giant shell CdSe/CdS quantum dots are bright and flexible emitters, with near-unity quantum yield and suppressed blinking, but their single photon purity is reduced by efficient multiexcitonic emission. We report the observation, at the single dot level, of a large blueshift of the photoluminescence biexciton spectrum (24 ± 5 nm over a sample of 32 dots) for pure-phase wurtzite quantum dots. By spectral filtering, we demonstrate a 2.3 times reduction of the biexciton quantum yield relative to the exciton emission, while preserving as much as 60% of the exciton single photon emission, thus improving the purity from g2(0) = 0.07 ± 0.01 to g2(0) = 0.03 ± 0.01. At a larger pump fluency, spectral purification is even more effective with up to a 6.6 times reduction in g2(0), which is due to the suppression of higher order excitons and shell states experiencing even larger blueshifts. Our results indicate the potential for the synthesis of engineered giant shell quantum dots, with further increased biexciton blueshifts, for quantum optical applications requiring both high purity and brightness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA