RESUMEN
Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.
Asunto(s)
Neoplasias , Trastornos del Neurodesarrollo , Cromatina , Histonas/metabolismo , Humanos , Proteínas de la Membrana , Neoplasias/genética , Trastornos del Neurodesarrollo/genética , Nucleosomas , Proteínas Proto-OncogénicasRESUMEN
Histone H3 Lys4 (H3K4) methylation is a chromatin feature enriched at gene cis-regulatory sequences such as promoters and enhancers. Here we identify an evolutionarily conserved factor, BRWD2/PHIP, which colocalizes with histone H3K4 methylation genome-wide in human cells, mouse embryonic stem cells, and Drosophila Biochemical analysis of BRWD2 demonstrated an association with the Cullin-4-RING ubiquitin E3 ligase-4 (CRL4) complex, nucleosomes, and chromatin remodelers. BRWD2/PHIP binds directly to H3K4 methylation through a previously unidentified chromatin-binding module related to Royal Family Tudor domains, which we named the CryptoTudor domain. Using CRISPR-Cas9 genetic knockouts, we demonstrate that COMPASS H3K4 methyltransferase family members differentially regulate BRWD2/PHIP chromatin occupancy. Finally, we demonstrate that depletion of the single Drosophila homolog dBRWD3 results in altered gene expression and aberrant patterns of histone H3 Lys27 acetylation at enhancers and promoters, suggesting a cross-talk between these chromatin modifications and transcription through the BRWD protein family.
Asunto(s)
Drosophila melanogaster/genética , Regulación de la Expresión Génica , Histonas/metabolismo , Dominio Tudor , Acetilación , Animales , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Técnicas de Inactivación de Genes , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación , Ratones , Regiones Promotoras Genéticas , Unión Proteica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Developmental arrest of Blimp1/Prdm1 mutant embryos at around embryonic day 10.5 (E10.5) has been attributed to placental disturbances. Here we investigate Blimp1/Prdm1 requirements in the trophoblast cell lineage. Loss of function disrupts specification of the invasive spiral artery-associated trophoblast giant cells (SpA-TGCs) surrounding maternal blood vessels and severely compromises the ability of the spongiotrophoblast layer to expand appropriately, secondarily causing collapse of the underlying labyrinth layer. Additionally, we identify a population of proliferating Blimp1(+) diploid cells present within the spongiotrophoblast layer. Lineage tracing experiments exploiting a novel Prdm1.Cre-LacZ allele demonstrate that these Blimp1(+) cells give rise to the mature SpA-TGCs, canal TGCs, and glycogen trophoblasts. In sum, the transcriptional repressor Blimp1/Prdm1 is required for terminal differentiation of SpA-TGCs and defines a lineage-restricted progenitor cell population contributing to placental growth and morphogenesis.
Asunto(s)
Diferenciación Celular , Células Gigantes/citología , Células Madre/citología , Factores de Transcripción/metabolismo , Trofoblastos/citología , Animales , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Placenta/irrigación sanguínea , Placenta/citología , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Embarazo , Células Madre/metabolismo , Factores de Transcripción/genéticaRESUMEN
The neonatal intestine is a very complex and dynamic organ that must rapidly adapt and remodel in response to a barrage of environmental stimuli during the first few postnatal weeks. Recent studies demonstrate that the zinc finger transcriptional repressor Blimp1/Prdm1 plays an essential role governing postnatal reprogramming of intestinal enterocytes during this period. Functional loss results in global changes in gene expression patterns, particularly in genes associated with metabolic function. Here we engineered a knock-in allele expressing an eGFP-tagged fusion protein under control of the endogenous regulatory elements and performed genome wide ChIP-seq analysis to identify direct Blimp1 targets and further elucidate the function of Blimp1 in intestinal development. Comparison with published human and mouse datasets revealed a highly conserved core set of genes including interferon-inducible promoters. Here we show that the interferon-inducible transcriptional activator Irf1 is constitutively expressed throughout fetal and postnatal intestinal epithelium development. ChIP-seq demonstrates closely overlapping Blimp1 and Irf1 peaks at key components of the MHC class I pathway in fetal enterocytes. The onset of MHC class I expression coincides with down-regulated Blimp1 expression during the suckling to weaning transition. Collectively, these experiments strongly suggest that in addition to regulating the enterocyte metabolic switch, Blimp1 functions as a gatekeeper in opposition to Irf1 to prevent premature activation of the MHC class I pathway in villus epithelium to maintain tolerance in the neonatal intestine.
Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Factor 1 Regulador del Interferón/metabolismo , Mucosa Intestinal/metabolismo , Placenta/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Enterocitos/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Humanos , Factor 1 Regulador del Interferón/genética , Mucosa Intestinal/crecimiento & desarrollo , Ratones , Placenta/citología , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Embarazo , Regiones Promotoras Genéticas/genética , Elementos Reguladores de la Transcripción/genética , Factores de Transcripción/genéticaRESUMEN
The past three decades have yielded a wealth of information regarding the chromatin regulatory mechanisms that control transcription. The "histone code" hypothesis-which posits that distinct combinations of posttranslational histone modifications are "read" by downstream effector proteins to regulate gene expression-has guided chromatin research to uncover fundamental mechanisms relevant to many aspects of biology. However, recent molecular and genetic studies revealed that the function of many histone-modifying enzymes extends independently and beyond their catalytic activities. In this review, we highlight original and recent advances in the understanding of noncatalytic functions of histone modifiers. Many of the histone modifications deposited by these enzymes-previously considered to be required for transcriptional activation-have been demonstrated to be dispensable for gene expression in living organisms. This perspective aims to prompt further examination of these enigmatic chromatin modifications by inspiring studies to define the noncatalytic "epigenetic moonlighting" functions of chromatin-modifying enzymes.
Asunto(s)
Epigénesis Genética , Histonas , Histonas/metabolismo , Cromatina/genética , Procesamiento Proteico-Postraduccional , Código de HistonasRESUMEN
The biological role of the repetitive DNA sequences in the human genome remains an outstanding question. Recent long-read human genome assemblies have allowed us to identify a function for one of these repetitive regions. We have uncovered a tandem array of conserved primate-specific retrogenes encoding the protein Elongin A3 (ELOA3), a homolog of the RNA polymerase II (RNAPII) elongation factor Elongin A (ELOA). Our genomic analysis shows that the ELOA3 gene cluster is conserved among primates and the number of ELOA3 gene repeats is variable in the human population and across primate species. Moreover, the gene cluster has undergone concerted evolution and homogenization within primates. Our biochemical studies show that ELOA3 functions as a promoter-associated RNAPII pause-release elongation factor with distinct biochemical and functional features from its ancestral homolog, ELOA. We propose that the ELOA3 gene cluster has evolved to fulfil a transcriptional regulatory function unique to the primate lineage that can be targeted to regulate cellular hyperproliferation.
Asunto(s)
Factores de Elongación de Péptidos , ARN Polimerasa II , Animales , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Elongación de Péptidos/genética , Primates/genética , Elonguina/genética , Familia de Multigenes , Secuencias Repetidas en Tándem/genéticaRESUMEN
Purkinje cell protein 4-like 1 (Pcp4l1) is a small neuronal IQ motif protein closely related to the calmodulin-binding protein Pcp4/PEP-19. PEP-19 interacts with calmodulin via its IQ motif to inhibit calmodulin-dependent enzymes and we hypothesized Pcp4l1 would have similar properties. Surprisingly, full-length Pcp4l1 does not interact with calmodulin in yeast two-hybrid or pulldown experiments yet a synthetic peptide constituting only the IQ motif of Pcp4l1 binds calmodulin and inhibits calmodulin-dependent kinase II. A nine-residue glutamic acid-rich sequence in Pcp4l1 confers these unexpected properties. This element lies outside the IQ motif and its deletion or exchange with the homologous region of PEP-19 restores calmodulin binding. Conversion of a single isoleucine (Ile36) within this motif to phenylalanine, the residue present in PEP-19, imparts calmodulin binding onto Pcp4l1. Moreover, only aromatic amino acid substitutions at position 36 in Pcp4l1 allow binding. Thus, despite their sequence similarities PEP-19 and Pcp4l1 have distinct properties with the latter harboring an element that can functionally suppress an IQ motif. We speculate Pcp4l1 may be a latent calmodulin inhibitor regulated by post-translational modification and/or co-factor interactions.
Asunto(s)
Proteínas de Unión a Calmodulina/química , Proteínas de Unión a Calmodulina/metabolismo , Calmodulina/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Western Blotting , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Transfección , Técnicas del Sistema de Dos HíbridosRESUMEN
Histone-modifying enzymes are implicated in the control of diverse DNA-templated processes including gene expression. Here, we outline historical and current thinking regarding the functions of histone modifications and their associated enzymes. One current viewpoint, based largely on correlative evidence, posits that histone modifications are instructive for transcriptional regulation and represent an epigenetic 'code'. Recent studies have challenged this model and suggest that histone marks previously associated with active genes do not directly cause transcriptional activation. Additionally, many histone-modifying proteins possess non-catalytic functions that overshadow their enzymatic activities. Given that much remains unknown regarding the functions of these proteins, the field should be cautious in interpreting loss-of-function phenotypes and must consider both cellular and developmental context. In this Perspective, we focus on recent progress relating to the catalytic and non-catalytic functions of the Trithorax-COMPASS complexes, Polycomb repressive complexes and Clr4/Suv39 histone-modifying machineries.
Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Regulación de la Expresión Génica/genética , Código de Histonas/genética , Histonas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Animales , Proteínas Cromosómicas no Histona/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metiltransferasas , Proteínas del Grupo Polycomb/metabolismo , Proteínas Represoras , Transcripción Genética , Activación Transcripcional/genéticaRESUMEN
Using biochemical characterization of fusion proteins associated with endometrial stromal sarcoma, we identified JAZF1 as a new subunit of the NuA4 acetyltransferase complex and CXORF67 as a subunit of the Polycomb Repressive Complex 2 (PRC2). Since CXORF67's interaction with PRC2 leads to decreased PRC2-dependent H3K27me2/3 deposition, we propose a new name for this gene: CATACOMB (catalytic antagonist of Polycomb; official gene name: EZHIP ). We map CATACOMB's inhibitory function to a short highly conserved region and identify a single methionine residue essential for diminution of H3K27me2/3 levels. Remarkably, the amino acid sequence surrounding this critical methionine resembles the oncogenic histone H3 Lys27-to-methionine (H3K27M) mutation found in high-grade pediatric gliomas. As CATACOMB expression is regulated through DNA methylation/demethylation, we propose CATACOMB as the potential interlocutor between DNA methylation and PRC2 activity. We raise the possibility that similar regulatory mechanisms could exist for other methyltransferase complexes such as Trithorax/COMPASS.
Asunto(s)
Glioma/metabolismo , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Oncogénicas/biosíntesis , Complejo Represivo Polycomb 2/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Metilación de ADN , ADN de Neoplasias , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Células HCT116 , Histonas/genética , Humanos , Metilación , Proteínas de Neoplasias/genética , Proteínas Oncogénicas/genética , Complejo Represivo Polycomb 2/genéticaRESUMEN
Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal.
Asunto(s)
Proteínas de Unión al ADN/genética , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Northern Blotting , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Femenino , Perfilación de la Expresión Génica , Hibridación in Situ , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Proteína Nodal/genética , Proteína Nodal/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnica SELEX de Producción de Aptámeros , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Dedos de Zinc/genéticaRESUMEN
The spontaneous destruction of insulin producing pancreatic beta cells in non-obese diabetic (NOD) mice provides a valuable model of type 1 diabetes. As in humans, disease susceptibility is controlled by the classical MHC class II genes that guide CD4(+) T cell responses to self and foreign antigens. It has long been suspected that the dedicated class II chaperone designated HLA-DM in humans or H-2M in mice also makes an important contribution, but due to tight linkage within the MHC, a possible role played by DM peptide editing has not been previously tested by conventional genetic approaches. Here we exploited newly established germ-line competent NOD ES cells to engineer a loss of function allele. DM deficient NOD mice display defective class II peptide occupancy and surface expression, and are completely protected against type 1 diabetes. Interestingly the mutation results in increased proportional representation of CD4(+)Foxp3(+) regulatory T cells and the absence of pathogenic CD4(+) T effectors. Overall, this striking phenotype establishes that DM-mediated peptide selection plays an essential role in the development of autoimmune diabetes in NOD mice.
Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Células Madre Embrionarias/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Diferenciación de Linfocitos B/inmunología , Antígenos de Diferenciación de Linfocitos B/metabolismo , Western Blotting , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Predisposición Genética a la Enfermedad/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Microscopía Confocal , Linfocitos T Reguladores/metabolismo , Timo/inmunología , Timo/metabolismoRESUMEN
Prdm1/Blimp-1 is a master regulator of gene expression in diverse tissues of the developing embryo and adult organism. Its C-terminal zinc finger domain mediates nuclear import, DNA binding, and recruitment of the corepressors G9a and HDAC1/2. Alternatively spliced transcripts lacking exon 7 sequences encode a structurally divergent isoform (Blimp-1Δexon7) predicted to have distinct functions. Here we demonstrate that the short Blimp-1Δexon7 isoform lacks DNA binding activity and fails to bind G9a or HDAC1/2 but retains the ability to interact with PRMT5. To investigate functional roles of alternative splicing in vivo, we engineered novel mouse strains via embryonic stem (ES) cell technology. Like null mutants, embryos carrying a targeted deletion of exon 7 and exclusively expressing Blimp-1Δexon7 die at around embryonic day 10.5 (E10.5) due to placental defects. In heterozygous Δexon7 mice, there is no evidence of dominant-negative effects. Mice carrying a knock-in allele with an exon 6-exon 7 fusion express full-length Blimp-1 only, develop normally, are healthy and fertile as adults, and efficiently generate mature plasma cells. These findings strongly suggest that the short Blimp-1Δexon7 isoform is dispensable. We propose that developmentally regulated alternative splicing is influenced by chromatin structure at the locus and fine-tunes Blimp-1's functional capabilities.
Asunto(s)
Empalme Alternativo , Proteínas Co-Represoras/metabolismo , ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Exones , Femenino , Eliminación de Gen , Marcación de Gen , Ratones , Datos de Secuencia Molecular , Células Plasmáticas/citología , Células Plasmáticas/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/químicaRESUMEN
The zinc-finger PR domain transcriptional repressor Blimp-1/Prdm1 plays essential roles in primordial germ cell specification, placental, heart, and forelimb development, plasma cell differentiation, and T-cell homeostasis. The present experiments demonstrate that the mouse Prdm1 gene has three alternative promoter regions. All three alternative first exons splice directly to exon 3, containing the translational start codon. To examine possible cell-type-specific functional activities in vivo, we generated targeted deletions that selectively eliminate two of these transcriptional start sites. Remarkably, mice lacking the previously described first exon develop normally and are fertile. However, this region contains NF-kappaB binding sites, and as shown here, NF-kappaB signaling is required for Prdm1 induction. Thus, mutant B cells fail to express Prdm1 in response to lipopolysaccharide stimulation and lack the ability to become antibody-secreting cells. An alternative distal promoter located approximately 70 kb upstream, giving rise to transcripts strongly expressed in the yolk sac, is dispensable. Thus, the deletion of exon 1B has no noticeable effect on expression levels in the embryo or adult tissues. Collectively, these experiments provide insight into the organization of the Prdm1 gene and demonstrate that NF-kappaB is a key mediator of Prdm1 expression.