Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 26(37): 8302-8307, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32291843

RESUMEN

A simple cobalt-diphosphine catalyst has been found to efficiently promote intramolecular cyclization of ortho-cyclopropylvinyl- and cyclopropylidenemethyl-substituted benzaldehydes into benzocyclooctadienone and benzocycloheptadienone derivatives, respectively. This ring-opening hydroacylation likely involves aldehyde C-H oxidative addition, olefin insertion, cyclopropane cleavage by ß-carbon elimination, and C-C bond-forming reductive elimination, as was supported by mechanistic experiments and DFT calculations.

2.
Sci Technol Adv Mater ; 21(1): 379-387, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32939163

RESUMEN

A paper-based electrode is a very attractive component for a disposable, nontoxic, and flexible biosensor. In particular, wearable biosensors, which have recently been attracting interest, not only require these characteristics of paper-based electrodes but must also be able to detect various ions and biomolecules in biological fluids. In this paper, we demonstrate the detection ability of paper-based metal electrodes for wearable biosensors as part of a wireless potentiometric measurement system, focusing on the detection of pH and sodium ions. The paper-based metal electrodes were obtained by simply coating a silicone-rubber-coated paper sheet with a Au (/Cr) thin film by sputtering then modifying it with different functional membranes such as an oxide membrane (Ta2O5) and a fluoropolysilicone (FPS)-based Na+-sensitive membrane, corresponding to the targeted ions. Satisfactory and stable detection sensitivities of the modified paper-based Au electrodes were obtained over several weeks even when they were bent to a radius of curvature in the range of 6.5 to 25 mm, assuming use in a flexible body patch biosensor. Moreover, the Na+ concentration in a sweat sample was evaluated using the paper-based Au electrode with the FPS-based Na+-sensitive membrane in a wireless and real-time manner while the electrode was bent. Thus, owing to their complex mesh structure, flexible paper sheets should be suitable for use as potentiometric electrodes for wearable wireless biosensors.

3.
Sci Technol Adv Mater ; 20(1): 917-926, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31595176

RESUMEN

In this study, we develop a Na+-sensitive thin-film transistor (TFT) for a biocompatible ion sensor and investigate its cytotoxicity. A transparent amorphous oxide semiconductor composed of amorphous In-Ga-Zn-oxide (a-InGaZnO) is utilized as a channel of the Na+-sensitive TFT, which includes an indium tin oxide (ITO) film as the source and drain electrodes and a Ta2O5 thin-film gate, onto which a Na+-sensitive membrane is coated. As one of the Na+-sensitive membranes, the polyvinyl chloride (PVC) membrane with bis(12-crown-4) as the ionophore used on the TFT sensors shows good sensitivity and selectivity to changes in Na+ concentration but has high cytotoxicity owing to the leaching of its plasticizer to the solution; the plasticizer is added to solve and entrap the ionophore in the PVC membrane. On the other hand, a plasticizer-free Na+-sensitive membrane, the fluoropolysilicone (FPS) membrane with the bis(12-crown-4) ionophore, also reduces cell viability owing to the leaching of the ionophore. However, the FPS membrane with calix[4]arene as the ionophore on the gate of TFT sensors exhibits not only favorable electrical properties but also the lack of cytotoxicity. Thus, considering structural flexibility of TFTs, a platform based on TFT sensors coated with the Na+-sensitive FPS membrane containing calix[4]arene is suitable as a biocompatible Na+ sensing system for the continuous monitoring of ionic components in biological fluids such as sweat and tears.

4.
Materials (Basel) ; 14(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435266

RESUMEN

This study employs first-principles calculations to investigate how introducing Yb into aluminum nitride (AlN) leads to a large enhancement in the material's piezoelectric response (d33). The maximum d33 is calculated to be over 100 pC/N, which is 20 times higher than that of AlN. One reason for such a significant improvement in d33 is the elastic-softening effect, which is indicated by a decrease in the elastic constant, C33. The strain sensitivity (du/dε) of the internal parameter, u, is also an important factor for improving the piezoelectric stress constant, e33. On the basis of mixing enthalpy calculations, YbxAl1-xN is predicted to be more stable as a wurtzite phase than as a rock salt phase at composition up to x ≈ 0.7. These results suggest that Yb can be doped into AlN at high concentrations. It was also observed that the dielectric constant, ε33, generally increases with increasing Yb concentrations. However, the electromechanical coupling coefficient, k332, only increases up to x = 0.778, which is likely because of the relatively lower values of ε33 within this range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA