Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0305082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870189

RESUMEN

Alpha waves, one of the major components of resting and awake cortical activity in human electroencephalography (EEG), are known to show waxing and waning, but this phenomenon has rarely been analyzed. In the present study, we analyzed this phenomenon from the viewpoint of excitation and inhibition. The alpha wave envelope was subjected to secondary differentiation. This gave the positive (acceleration positive, Ap) and negative (acceleration negative, An) values of acceleration and their ratio (Ap-An ratio) at each sampling point of the envelope signals for 60 seconds. This analysis was performed on 36 participants with Alzheimer's disease (AD), 23 with frontotemporal dementia (FTD) and 29 age-matched healthy participants (NC) whose data were provided as open datasets. The mean values of the Ap-An ratio for 60 seconds at each EEG electrode were compared between the NC and AD/FTD groups. The AD (1.41 ±0.01 (SD)) and FTD (1.40 ±0.02) groups showed a larger Ap-An ratio than the NC group (1.38 ±0.02, p<0.05). A significant correlation between the envelope amplitude of alpha activity and the Ap-An ratio was observed at most electrodes in the NC group (Pearson's correlation coefficient, r = -0.92 ±0.15, mean for all electrodes), whereas the correlation was disrupted in AD (-0.09 ±0.21, p<0.05) and disrupted in the frontal region in the FTD group. The present method analyzed the envelope of alpha waves from a new perspective, that of excitation and inhibition, and it could detect properties of the EEG, Ap-An ratio, that have not been revealed by existing methods. The present study proposed a new method to analyze the alpha activity envelope in electroencephalography, which could be related to excitatory and inhibitory neural activity.


Asunto(s)
Ritmo alfa , Enfermedad de Alzheimer , Electroencefalografía , Demencia Frontotemporal , Humanos , Masculino , Femenino , Electroencefalografía/métodos , Anciano , Enfermedad de Alzheimer/fisiopatología , Ritmo alfa/fisiología , Demencia Frontotemporal/fisiopatología , Persona de Mediana Edad , Estudios de Casos y Controles
2.
IBRO Neurosci Rep ; 10: 208-215, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34095892

RESUMEN

Quantitative objective measurement of chronic pain is important. We elucidated chronic pain-related cortical neural activity and neural connectivity among pain-related brain regions in complex regional pain syndrome (CRPS). Resting-state magnetoencephalography recordings were performed. Cortical current density and neural connectivity, revealed by amplitude envelope correlation (AEC), were estimated on standardized brain magnetic resonance imaging. Intra-experiment pain was assessed subjectively using a visual analogue scale (VAS). The correlation between current density and VAS scores was calculated for the occipital areas and pain-related cortices. Current density in the primary (SI) and secondary (SII) somatosensory cortex and precuneus in both hemispheres was negatively correlated with the pain VAS score. The AEC and VAS values were significantly correlated for the SII and the precuneus and for the SII and insular cortex in the alpha frequency band in the right hemisphere. In the theta frequency band, the AEC and VAS values correlated for the SII and posterior cingulate cortex in the right hemisphere. Our results suggested that disruption of pain processes and functions in the default mode network occurs in CRPS. Our method targeting the neural mechanism of pain has the potential to offer a clinically objective means of evaluating it.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA