Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32761457

RESUMEN

In recent years, it has been shown that breast cancer consists not only of neoplastic cells, but also of significant alterations in the surrounding stroma or tumor microenvironment. These alterations are now recognized as a critical element for breast cancer development and progression, as well as potential therapeutic targets. Furthermore, there is no doubt that ion channels are deregulated in breast cancer and some of which are prognostic markers of clinical outcome. Their dysregulation is also associated with aberrant signaling pathways. The number of published data on ion channels modifications by the microenvironment has significantly increased last years. Here, we summarize the state of the art on the cross talk between the tumor microenvironment and ion channels, in particular collagen 1, EGF, TGF-ß, ATP, hypoxia, and pH, on the development and progression of breast cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Canales Iónicos , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral
2.
Anal Chem ; 95(9): 4395-4403, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36788139

RESUMEN

Cell heterogeneity is a crucial parameter for understanding the complexity of numerous biomedical issues. Trajectory inference-based approaches are recent tools developed for single-cell transcriptomics (scRNA-seq) data analysis. They aim to reconstruct evolving pathways from the variety of cell states that coexist simultaneously in a cell population. We propose to expand this concept to Raman spectroscopy, a label-free modality that probes the global molecular nature of a sample, by investigating the dynamics of adipocyte differentiation.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Diferenciación Celular , Espectrometría Raman , Análisis de Secuencia de ARN/métodos
3.
Chem Biodivers ; 19(7): e202100836, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35665594

RESUMEN

A series of novel 2-iminothiazolidin-4-one analogs have been synthesized from limonaketone, and structurally characterized by HR-MS, 1 H-NMR and 13 C-NMR spectroscopy techniques, and the structure of compound 4 was elucidated by XRD. The newly synthesized products were biologically evaluated in vitro for their cytotoxic activity against human cancer cell lines HT-1080, A549, and MCF-7. Thiazolidinones 9 and 10 were the most active compounds in HT-1080 cell lines (IC50 =15.85±1.75 and 16.13±1.55 µM, respectively). The apoptosis induction of the derivatives 9 and 10 were studied using annexin V staining, caspase-3/7 activity and cell cycle analysis. Compound 10 showed the highest ability of apoptosis induction and caspase-3/7 activation associated with S-phase growth arrest in HT-1080. Meanwhile, compound 9 has a moderate apoptotic effect and G0/G1-phase arrest in the after-mentioned cell. The molecular docking suggested that compounds 9 and 10 formed stable ligand-caspase-3 complexes. Besides, the presence of phenyl moiety in ligand 10 is responsible for the enhancement of the caspase-3 activation by the apparition of two additional hydrogen bonds with Cys163 and Gln161amino acids.


Asunto(s)
Antineoplásicos , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Caspasa 3 , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
4.
Arch Pharm (Weinheim) ; 355(9): e2200066, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35594031

RESUMEN

In the current study, natural (R)-carvone was utilized as a starting material for the efficient synthesis of two series of isoxazoline derivatives bearing the 1,3,4-thiadiazole moiety. The new compounds were obtained in good yields and were characterized by 1 H and 13 C NMR and HRMS analysis. The newly synthesized monoterpenic isoxazoline 1,3,4-thiadiazole and their thiosemicarbazone intermediate derivatives were evaluated for their anticancer activity in four cancer cell lines (HT-1080, A-549, MCF-7, and MDA-MB-231). Most of the synthesized compounds exhibited moderate to high anticancer effects. Compound 13c showed the highest anticancer activity with IC50 values ranging from 19.33 ± 1.81 to 34.81 ± 3.03 µM. Further investigation revealed that compounds 12e and 13c could inhibit the cell growth of HT-1080 and MCF-7 cells by inducing apoptosis through caspase-3/7 activation. The apoptotic effect was accompanied by an S phase and G2/M cell cycle arrest for 13c and 12e, respectively. Compounds 12e and 13c were assessed in silico using molecular docking and molecular dynamics. We found that compound 13c is moderately active against the caspase-3 protein, which triggers apoptosis via intrinsic and extrinsic routes, making compound 13c a promising candidate to activate the proapoptotic protein (caspase-3).


Asunto(s)
Antineoplásicos , Simulación de Dinámica Molecular , Androstenoles/química , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tiadiazoles
5.
J Mol Struct ; : 134135, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36101881

RESUMEN

Analogs of pyrimidine and 1,3,4-oxadiazole are two well established class of molecules proven as potent antiviral and anticancer agents in the pharmaceutical industry. We envisioned designing new molecules where these two heterocycles were conjugated with the goal of enhancing biological activity. In this vein, we synthesized a series of novel pyrimidine-1,3,4-oxadiazole conjugated hybrid molecules as potential anticancer and antiviral agents. Herein, we present a new design for 5-fluorocytosine-1,3,4-oxadiazole hybrids (5a-h) connected via a methylene bridge. An efficient synthesis of new derivatives was established, and all compounds were fully characterized by NMR and MS. Eight compounds were evaluated for their cytotoxic activity against fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), lung carcinoma (A-549), and for their antiviral activity against SARS-CoV-2. Among all compounds tested, the compound 5e showed marked growth inhibition against all cell lines tested, particularly in HT-1080, with IC50 values of 19.56 µM. Meanwhile, all tested compounds showed no anti-SARS-CoV-2 activity, with EC50 >100 µM. The mechanism of cell death was investigated using Annexin V staining, caspase-3/7 activity, and analysis of cell cycle progression. The compound 5e induced apoptosis by the activation of caspase-3/7 and cell-cycle arrest in HT-1080 and A-549 cells at the G2M phase. The molecular docking suggested that the compound 5e activated caspase-3 via the formation of a stable complex protein-ligand.

6.
Molecules ; 27(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35164037

RESUMEN

Aseries of novel 1,4-disubstituted 1,2,3-triazoles were synthesized from an (R)-carvone terminal alkyne derivative via a Cu (I)-catalyzed azide-alkyne cycloaddition reaction using CuSO4,5H2O as the copper (II) source and sodium ascorbate as a reducing agent which reduces Cu (II) into Cu (I). All the newly synthesized 1,2,3-triazoles 9a-h were fully identified on the basis of their HRMS and NMR spectral data and then evaluated for their cell growth inhibition potential by MTS assay against HT-1080 fibrosarcoma, A-549 lung carcinoma, and two breast adenocarcinoma (MCF-7 and MDA-MB-231) cell lines. Compound 9d showed notable cytotoxic effects against the HT-1080 and MCF-7 cells with IC50 values of 25.77 and 27.89 µM, respectively, while compound 9c displayed significant activity against MCF-7 cells with an IC50 value of 25.03 µM. Density functional calculations at the B3LYP/6-31G* level of theory were used to confirm the high reactivity of the terminal alkyne as a dipolarophile. Quantum calculations were also used to investigate the mechanism of both the uncatalyzed and copper (I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC). The catalyzed reaction gives complete regioselectivity via a stepwise mechanism streamlining experimental observations. The calculated free-energy barriers 4.33 kcal/mol and 29.35 kcal/mol for the 1,4- and 1,5-regioisomers, respectively, explain the marked regioselectivity of the CuAAC reaction.


Asunto(s)
Monoterpenos Ciclohexánicos/química , Triazoles/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular Tumoral , Reacción de Cicloadición , Monoterpenos Ciclohexánicos/farmacología , Teoría Funcional de la Densidad , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Técnicas In Vitro , Espectroscopía de Protones por Resonancia Magnética , Triazoles/síntesis química , Triazoles/farmacología
7.
Bioorg Chem ; 108: 104558, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33358270

RESUMEN

A novel series of homonucleosides and their double-headed analogs containing theophylline, 1,3,4-oxadiazole, and variant nucleobases was designed and synthesized. The new derivatives were fully characterized by HRMS, FT-IR, 1H NMR, and 13C NMR. The cytotoxic activities of all prepared compounds were screened in vitro against four cell lines, including fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), and lung carcinoma (A-549). The double-headed analogue 18 showed marked growth inhibition against all the cell lines tested, specifically in HT-1080, with an IC50 values of 17.08 ± 0.97 µM. The possible mechanism of apoptosis was investigated using Annexin V staining, caspase-3/7 activity, and analysis cell cycle progression. The compound 18 induced apoptosis through caspase-3/7 activation and cell-cycle arrest in HT-1080 and A-549 cells. The molecular docking confirms that the compound 18 activated caspase-3 via the formation of hydrogen bonds and hydrophobic interactions.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Nucleósidos/farmacología , Oxadiazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/química , Oxadiazoles/síntesis química , Oxadiazoles/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
8.
Bioorg Chem ; 115: 105184, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34333421

RESUMEN

A novel series of 1,2,3-triazole-thiazolidinone-carvone hybrid compounds has been designed and synthesized using the copper-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition (CuAAC) process based on (R)-Carvone-O-propargylated 5-hydroxybenzylidene-thiazolidin-4-one derivative as starting material. All compounds were characterized and identified based on their NMR and HRMS spectroscopic data. HMBC correlations confirm that under the CuAAC reaction conditions, only the 1,4-disubstituted triazole regioisomers were formed. The targeted 1,2,3-triazole-thiazolidinone-carvone hybrids and their precursors were evaluated for their cytotoxic activity against four human cancer cell lines, including fibrosarcoma (HT-1080), lung carcinoma (A-549), and breast carcinoma (MCF-7 and MDA-MB-231). The obtained data showed that most of these compounds have moderate anti-proliferative activity with IC50 values between 15.04 ± 0.71 and 42.22 ± 1.20 µM. The mechanism of action of the most active compounds 14e and 14f suggested that they induce apoptosis through caspase-3/7 activation, and the compound 14e elicited S-phase arrest, while compound 14f evoked G2/M phase blockade. The molecular docking confirmed that compounds 14e and 14f were nicely bonded with caspace-3 leading up to stable protein-ligand complexes.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Triazoles/química , Triazoles/farmacología , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química , Tiazolidinedionas/farmacología , Triazoles/síntesis química
9.
Bioorg Chem ; 115: 105165, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34298240

RESUMEN

A new series of diverse triazoles linked to the hydroxyl group of totarol were synthesized using click chemistry approach. The structures of these compounds were elucidated by HRMS, IR and NMR spectroscopy. The structure of compound 3 g was also confirmed by x-ray single crystal diffraction. The cytotoxicity of these compounds was evaluated by the MTT method against four cancer cell lines, including fibrosarcoma HT-1080, lung carcinoma A-549 and breast adenocarcinoma (MDA-MB-231 and MCF-7), and the results indicated that all compounds showed weak to moderate activities against all cancer cell lines with IC50 values ranging from 14.44 to 46.25 µM. On the basis of our research the structure-activity relationships (SAR) of these compounds were discussed. This work provides some important hints for further structural modification of totarol towards developing novel and highly effective anticancer drugs respectively. It is interesting to note that compound 3 g indicated a very significant cytotoxicity against HT-1080 and A-549 cell lines. The molecular docking showed that compound 3 g activated the caspase-3 and inhibited tubulin by forming stable protein-ligand complexes.


Asunto(s)
Abietanos/química , Antineoplásicos/química , Diseño de Fármacos , Triazoles/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión , Caspasa 3/química , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Química Clic , Cristalografía por Rayos X , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Teoría Cuántica , Electricidad Estática , Relación Estructura-Actividad , Triazoles/metabolismo , Triazoles/farmacología
10.
Nanomedicine ; 35: 102404, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932593

RESUMEN

Intracellular distribution of doxorubicin (DOX) and its squalenoylated (SQ-DOX) nanoparticles (NPs) form in murine lung carcinoma M109 and human breast carcinoma MDA-MB-231 cells was investigated by Raman microspectroscopy. Pharmacological data showed that DOX induced higher cytotoxic effect than SQ-DOX NPs. Raman data were obtained using single-point measurements and imaging on the whole cell areas. These data showed that after DOX treatment at 1 µM, the spectral features of DOX were not detected in the M109 cell cytoplasm and nucleus. However, the intracellular distribution of SQ-DOX NPs was higher than DOX in the same conditions. In addition, SQ-DOX NPs were localized into both cell cytoplasm and nucleus. After 5 µM treatment, Raman bands of DOX at 1211 and 1241 cm-1 were detected in the nucleus. Moreover, the intensity ratio of these bands decreased, indicating DOX intercalation into DNA. However, after treatment with SQ-DOX NPs, the intensity of these Raman bands increased. Interestingly, with SQ-DOX NPs, the intensity of 1210/1241 cm-1 ratio was higher suggesting a lower fraction of intercalated DOX in DNA and higher amount of non-hydrolyzed SQ-DOX. Raman imaging data confirm this subcellular localization of these drugs in both M109 and MDA-MB-231 cells. These finding brings new insights to the cellular characterization of anticancer drugs at the molecular level, particularly in the field of nanomedicine.


Asunto(s)
Neoplasias de la Mama , Doxorrubicina , Neoplasias Pulmonares , Nanopartículas , Análisis de la Célula Individual , Escualeno , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Nanopartículas/química , Nanopartículas/uso terapéutico , Espectrometría Raman , Escualeno/química , Escualeno/farmacocinética , Escualeno/farmacología
11.
Arch Pharm (Weinheim) ; 354(10): e2100146, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34128255

RESUMEN

A new series of furo[2,3-d]pyrimidine-1,3,4-oxadiazole hybrid derivatives were synthesized via an environmentally friendly, multistep synthetic tool and a one-pot Songoashira-heterocyclization protocol using, for the first time, nanostructured palladium pyrophosphate (Na2 PdP2 O7 ) as a heterogeneous catalyst. Compounds 9a-c exhibited broad-spectrum activity with low micromolar EC50 values toward wild and mutant varicella-zoster virus (VZV) strains. Compound 9b was up to threefold more potent than the reference drug acyclovir against thymidine kinase-deficient VZV strains. Importantly, derivative 9b was not cytostatic at the maximum tested concentration (CC50 > 100 µM) and had an acceptable selectivity index value of up to 7.8. Moreover, all synthesized 1,3,4-oxadiazole hybrids were evaluated for their cytotoxic activity in four human cancer cell lines: fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), and lung carcinoma (A549). Data showed that compound 8f exhibits moderate cytotoxicity, with IC50 values ranging from 13.89 to 19.43 µM. Besides, compound 8f induced apoptosis through caspase 3/7 activation, cell death independently of the mitochondrial pathway, and cell cycle arrest in the S phase for HT1080 cells and the G1/M phase for A549 cells. Finally, the molecular docking study confirmed that the anticancer activity of the synthesized compounds is mediated by the activation of caspase 3.


Asunto(s)
Antineoplásicos/farmacología , Antivirales/farmacología , Oxadiazoles/farmacología , Pirimidinas/farmacología , Aciclovir/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antivirales/síntesis química , Antivirales/química , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Herpesvirus Humano 3/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Oxadiazoles/síntesis química , Oxadiazoles/química , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
12.
Bioorg Med Chem Lett ; 30(19): 127438, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32736079

RESUMEN

A new series of uracil analogues-1,2,4-oxadiazole hybrid derivatives were synthesized by a new, simple, and efficient method using for the first time HAP-SO3H as an heterogenous acid catalyst for the condensation and cyclization between amidoxime and aldehyde. The new derivatives were characterized by HRMS, FT-IR, 1H NMR, and 13C NMR spectroscopy techniques. The synthesized 1,2,4-oxadiazole hybrids were evaluated for their cytotoxic activity in five human cancer cell lines: melanoma (A-375), fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), and lung carcinoma (A-549). Data showed that compounds 22 and 23 were potent cytotoxic agents against HT-1080 and MFC-7 cells with IC50 inferior to 1 µM. The possible mechanism of apoptosis induction by the derivatives was investigated using Annexin V staining, caspase-3/7 activity, mitochondrial membrane potential measurement, and analysis cell cycle progression. The compound 22 induced apoptosis through caspase-3/7 activation and S-phase arrest in HT-1080 and A549 cells. The molecular docking showed that compound 22 activated the caspase-3 by forming a stable protein-ligand complex.


Asunto(s)
Antineoplásicos/farmacología , Oxadiazoles/farmacología , Uracilo/análogos & derivados , Uracilo/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/metabolismo , Unión Proteica , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Relación Estructura-Actividad , Uracilo/metabolismo
13.
J Cell Biochem ; 118(7): 1689-1698, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27922187

RESUMEN

Tomentosin, a natural sesquiterpene lactone purified from of Inula viscosa L., was investigated for its anti-proliferative, telomere shortening, and apoptotic effects on human cervical cancer HeLa and SiHa cell lines. Tomentosin was found to inhibit the growth of SiHa and HeLa cell lines in dose and time-dependent manner (IC50 values of 7.10 ± 0.78 µM and 5.87 ± 0.36 µM, respectively after 96 h of treatment). As evidenced by TTAGGG telomere length assay, tomentosin target specifically the telomeric overhang lengthening. This was confirmed by the evaluation of the cytotoxic effects of tomentosin in the foetal fibroblast Wi38 and JW10 cells which were derived from Wi38 and express hTERT, the telomerase catalytic subunit. We found that JW10 cells are 4.7-fold more sensitive to tomentosin which argues for telomere as its specific target. Furthermore, we found that tomentosin mediate this cytotoxic effect by inducing apoptosis and cell cycle arrest at G2/M phase. Morphological features of treated cells, as evidenced by Hoechst 33324 staining, revealed that the cytotoxic effect was due to induction of apoptosis. This was accompanied by pro-caspase-3 cleavage, an increase in caspase-3 activity and a cleavage of poly (ADP-ribose) polymerase (PARP). Moreover, tomentosin induced a decrease in mitochondrial membrane potential (ΔΨm) and an increase in reactive oxygen species (ROS), accompanied by a decrease in Bcl-2 expression. This indicates that tomentosin-induced apoptosis may involve a mitochondria-mediated signaling pathway. This study provides the first evidence that tomentosin targets telomere machinery and induces apoptosis in cervical cancer cells. The molecular mechanism underlying tomentosin-induced apoptosis may involve a mitochondria-mediated signaling pathway. J. Cell. Biochem. 118: 1689-1698, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Lactonas/farmacología , Sesquiterpenos/farmacología , Telómero/genética , Neoplasias del Cuello Uterino/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Caspasa 3/genética , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , División Celular/efectos de los fármacos , División Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Femenino , Fase G2/efectos de los fármacos , Fase G2/genética , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Especies Reactivas de Oxígeno/metabolismo , Telómero/efectos de los fármacos
14.
Br J Haematol ; 174(1): 57-70, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26970083

RESUMEN

Cancer cells protect their telomere ends from erosion through reactivation of telomerase or by using the Alternative Lengthening of Telomere (ALT) mechanism that depends on homologous recombination. Chronic lymphocytic leukaemia (CLL) B cells are characterized by almost no telomerase activity, shelterin deregulation and telomere fusions. To characterize telomeric maintenance mechanisms in B-CLL patients, we measured their telomere length, telomerase expression and the main hallmarks of the ALT activity i.e. C-circle concentration, an extra-chromosomal telomere repeat (ECTR), and the level of telomeric sister chromatid exchange (T-SCE) rate. Patients showed relative homogenous telomere length although almost no TERT transcript and nearly no C-circle were evidenced. Nevertheless, compared with normal B cells, B-CLL cells showed an increase in T-SCE rate that was correlated with a strong down-regulation of the topoisomerase III alpha (TOP3A) expression, involved in the dissolution of Holliday Junctions (HJ), together with an increased expression of SLX1A, SLX4, MUS81 and GEN1, involved in the resolution of HJ. Altogether, our results suggest that the telomere maintenance mechanism of B-CLL cells do not preferentially use telomerase or ALT. Rather, the rupture of the dissolvasome/resolvasome balance may increase telomere shuffling that could homogenize telomere length, slowing telomere erosion in this disease.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/genética , Intercambio de Cromátides Hermanas , Telómero/genética , Adulto , Anciano , ADN Cruciforme , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Persona de Mediana Edad , Telomerasa/análisis , Homeostasis del Telómero
15.
J Biol Inorg Chem ; 21(7): 837-49, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27484500

RESUMEN

Two water soluble gallium complexes described as [Ga(III)LCl], where L is the deprotonated form of N-2-hydroxybenzyl aspartic acid derivatives, were synthesized and characterized by (1)H NMR, (13)C NMR, FT-IR, mass spectrometry, and elemental analysis. The 2-(5-chloro-2-hydroxybenzylamino)succinic acid derivative (GS2) has been found to be a promising anticancer drug candidate. This compound was found to be more cytotoxic against human breast carcinoma MDA-MB231 and fibrosarcoma HT-1080 cell lines than the unsubstituted derivative and GaCl3. GS2 was able to induce apoptosis through downregulation of AKT phosphorylation, G2M arrest in cell cycle, and caspase 3/7 pathway. This gallium complex was found to induce an increase in mitochondrial ROS level in HT-1080 cells but not in MDA-MB231 cells. This suggests that the mechanism of action of GS2 would not be mediated by the drug-induced oxidative stress but probably by directly and indirectly inhibiting the AKT cell-signaling pathway.


Asunto(s)
Ácido Aspártico/química , Neoplasias de la Mama/patología , Fibrosarcoma/patología , Galio/química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Agua/química , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Solubilidad
16.
Nutr Cancer ; 68(1): 131-43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26771897

RESUMEN

Telomerase is activated in human papillomavirus (HPV) positive cervical cancer and targeting telomeres offers a novel anticancer therapeutic strategy. In this study, the telomere targeting properties, the cytotoxic as well as the pro-apoptotic effects of hexane (IV-HE) and dichloromethane (IV-DF) fractions from Inula viscosa L. extracts were investigated on human cervical HeLa and SiHa cancer cells. Our data demonstrate that IV-HE and IV-DF extracts were able to inhibit cell growth in HeLa and SiHa cells in a dose-dependent manner and studied resistant cell lines exhibited a resistance factor less than 2 when treated with the extracts. IV-HE and IV-DF extracts were able to inhibit telomerase activity and to induce telomere shortening as shown by telomeric repeat amplification protocol and TTAGGG telomere length assay, respectively. The sensitivity of fibroblasts to the extracts was increased when telomerase was expressed. Finally, IV-HE and IV-DF were able to induce apoptosis as evidenced by an increase in annexin-V labeling and caspase-3 activity. This study provides the first evidence that the IV-HE and IV-DF extracts from Inula viscosa L. target telomeres induce apoptosis and overcome drug resistance in tumor cells. Future studies will focus on the identification of the molecules involved in the anticancer activity.


Asunto(s)
Apoptosis/efectos de los fármacos , Inula , Extractos Vegetales/farmacología , Acortamiento del Telómero/efectos de los fármacos , Anexina A5/análisis , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Telomerasa/metabolismo
17.
Nutr Cancer ; 66(3): 483-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24628411

RESUMEN

Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia P388/tratamiento farmacológico , Medicago sativa/química , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos , Humanos , Leucemia P388/patología , Ratones , Extractos Vegetales/análisis , Hojas de la Planta/química
18.
Int J Biol Macromol ; 254(Pt 3): 127936, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939767

RESUMEN

We have investigated the impact of obesity on the structural organization, morpho-mechanical properties of collagen fibers from rat tail tendon fascicles (RTTFs). Polarized Raman microspectroscopy showed that the collagen bands 855, 875, 938, and 960 cm-1 as well as those 1631 and 1660 cm-1 were affected by diet. Mechanical properties exhibited an increase in the yield strength from control (CTRL) to high fat (HF) diet (9.60 ± 1.71 and 13.09 ± 1.81 MPa) (p < 0.01) and ultimate tensile strength (13.12 ± 2.37 and 18.32 ± 2.83 MPa) (p < 0.05) with no significant change in the Young's Modulus. During mechanical, the band at 875 cm-1 exhibited the most relevant frequency shift (2 cm-1). The intensity of those at 855, 875, and 938 cm-1 in HF collagen displayed a comparable response to mechanical stress as compared to CTRL collagen with no significant diet-related changes in the Full Width at Half Maximum. Second harmonic generation technique revealed i) similar fiber straightness (0.963 ± 0.004 and 0.965 ± 0.003) and ii) significant changes in fibers diameter (1.48 ± 0.07 and 1.52 ± 0.08 µm) (p < 0.05) and length (22.06 ± 2.38 and 29.00 ± 3.76 µm) (p < 0.001) between CTRL and HF diet, respectively. The quantification of advanced glycation end products (AGEs) revealed an increase in both carboxymethyl-lysine and total fluorescence AGEs from CTRL to HF RTTFs.


Asunto(s)
Colágeno , Cola (estructura animal) , Ratas , Animales , Colágeno/química , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Tendones/fisiología , Resistencia a la Tracción
19.
Int J Pharm ; : 124870, 2024 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-39490555

RESUMEN

We have investigated the impact of gemcitabine (Gem) and deuterated gemcitabine-squalene (GemSQ-d6) nanoparticles (NPs) on MCF7 and MDA-MB-231 breast cancer cell lines by Raman spectroscopy. Quantification of LDL expression levels in both cell lines revealed a four-fold increase in MDA-MB-231 cells compared to MCF7 cells. In in vitro antitumor assessments, Gem displayed 13.5 times more effectiveness than GemSQ NPs against MCF7 cells, whereas GemSQ NPs induced a 14-fold increase in cytotoxicity compared to Gem for MDA-MB-231 cells. Oil Red O staining revealed that the treatment with GemSQ-d6 NPs induced a higher accumulation of lipid droplets at the periphery of the nucleus in MDA-MB-231 cells compared to MCF7 cells. Raman spectroscopy was employed to assess the impact of these drugs (50 µM, 24 h) on these breast cancer cell lines. By using the silent region (2000-2400 cm-1), we demonstrated that the accumulation of the GemSQ-d6 bioconjugate was higher in the cytoplasm of MDA-MB-231 cells than in MCF7 cells. This difference in drug accumulation is likely correlated with their expression levels of LDL receptors (LDLR) However, no information was obtained on Gem in this spectral region. We identified Raman features of squalene (SQ) in 700-1800 cm-1 fingerprint region that allowed us to observe almost the same distribution of GemSQ as that observed in the silent region for both cell lines treated with GemSQ-d6 or SQ-d6. Subsequently, the effects of Gem and GemSQ-d6 on cellular components such as proteins, nucleic acids, and cytochrome C were monitored within the fingerprint spectral region. Our results revealed distinct features in the subcellular accumulation of these biomolecules in response to Gem and GemSQ treatments.

20.
Future Med Chem ; : 1-14, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291612

RESUMEN

Aim: A series of semicarbazone and thiosemicarbazone-tailed hybrids comprising pyrazole and acetylisoxazoline were prepared from (R)-carvone and characterized by technique spectroscopies Nuclear Magnetic Resonance (NMR), IR and High-Resolution Mass Spectrometry. Density Functional Theory (DFT) determined the structural parameters. Their cytotoxic activity was evaluated in vitro against four human cancer cell lines.Methods & results: All the studied semi and thiosemicarbazone demonstrate a promising potential as anticancer agents. The mechanism of action of these compounds involves apoptosis in HT-1080 cells, supported by an increase in the level of caspase-3/7 activity, which also arrests the cell cycle in the G0/G1 phase. Molecular docking studies were performed to establish the potential of the most active compounds 4a and 5a. ADMET analysis showed appropriate pharmacokinetic properties, allowing structure prediction for anticancer activity.


[Box: see text].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA