RESUMEN
RATIONALE: Ischemic mitral regurgitation, a complication after myocardial infarction (MI), induces adaptive mitral valve (MV) responses that may be initially beneficial but eventually lead to leaflet fibrosis and MV dysfunction. We sought to examine the MV endothelial response and its potential contribution to ischemic mitral regurgitation. OBJECTIVE: Endothelial, interstitial, and hematopoietic cells in MVs from post-MI sheep were quantified. MV endothelial CD45, found post MI, was analyzed in vitro. METHODS AND RESULTS: Ovine MVs, harvested 6 months after inferior MI, showed CD45, a protein tyrosine phosphatase, colocalized with von Willebrand factor, an endothelial marker. Flow cytometry of MV cells revealed significant increases in CD45+ endothelial cells (VE-cadherin+/CD45+/α-smooth muscle actin [SMA]+ and VE-cadherin+/CD45+/αSMA- cells) and possible fibrocytes (VE-cadherin-/CD45+/αSMA+) in inferior MI compared with sham-operated and normal sheep. CD45+ cells correlated with MV fibrosis and mitral regurgitation severity. VE-cadherin+/CD45+/αSMA+ cells suggested that CD45 may be linked to endothelial-to-mesenchymal transition (EndMT). MV endothelial cells treated with transforming growth factor-ß1 to induce EndMT expressed CD45 and fibrosis markers collagen 1 and 3 and transforming growth factor-ß1 to 3, not observed in transforming growth factor-ß1-treated arterial endothelial cells. A CD45 protein tyrosine phosphatase inhibitor blocked induction of EndMT and fibrosis markers and inhibited EndMT-associated migration of MV endothelial cells. CONCLUSIONS: MV endothelial cells express CD45, both in vivo post MI and in vitro in response to transforming growth factor-ß1. A CD45 phosphatase inhibitor blocked hallmarks of EndMT in MV endothelial cells. These results point to a novel, functional requirement for CD45 phosphatase activity in EndMT. The contribution of CD45+ endothelial cells to MV adaptation and fibrosis post MI warrants investigation.
Asunto(s)
Células Endoteliales/metabolismo , Antígenos Comunes de Leucocito/biosíntesis , Válvula Mitral/citología , Válvula Mitral/metabolismo , Infarto del Miocardio/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica , Antígenos Comunes de Leucocito/genética , Infarto del Miocardio/genética , OvinosRESUMEN
Background The onset and mechanisms of endothelial-to-mesenchymal transition (EndMT) in mitral valve (MV) leaflets following myocardial infarction (MI) are unknown, yet these events are closely linked to stiffening of leaflets and development of ischemic mitral regurgitation. We investigated whether circulating molecules present in plasma within days after MI incite EndMT in MV leaflets. Methods and Results We examined the onset of EndMT in MV leaflets from 9 sheep with inferior MI, 8 with sham surgery, and 6 naïve controls. Ovine MVs 8 to 10 days after inferior MI displayed EndMT, shown by increased vascular endothelial cadherin/α-smooth muscle actin-positive cells. The effect of plasma on EndMT in MV endothelial cells (VECs) was assessed by quantitative polymerase chain reaction, migration assays, and immunofluorescence. In vitro, post-MI plasma induced EndMT marker expression and enhanced migration of mitral VECs; sham plasma did not. Analysis of sham versus post-MI plasma revealed a significant drop in the Wnt signaling antagonist sFRP3 (secreted frizzled-related protein 3) in post-MI plasma. Addition of recombinant sFRP3 to post-MI plasma reversed its EndMT-inducing effect on mitral VECs. RNA-sequencing analysis of mitral VECs exposed to post-MI plasma showed upregulated FOXM1 (forkhead box M1). Blocking FOXM1 reduced EndMT transcripts in mitral VECs treated with post-MI plasma. Finally, FOXM1 induced by post-MI plasma was downregulated by sFRP3. Conclusions Reduced sFRP3 in post-MI plasma facilitates EndMT in mitral VECs by increasing the transcription factor FOXM1. Restoring sFRP3 levels or inhibiting FOXM1 soon after MI may provide a novel strategy to modulate EndMT in the MV to prevent ischemic mitral regurgitation and heart failure.