Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 105(5): 1030-1039, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31630787

RESUMEN

Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells.


Asunto(s)
Ventrículos Cerebrales/patología , Ciliopatías/genética , Factores de Transcripción Forkhead/genética , Hidrocefalia/genética , Mutación/genética , Cuerpos Basales/patología , Cilios/genética , Cilios/patología , Ciliopatías/patología , Epéndimo/patología , Células Epiteliales/patología , Humanos , Hidrocefalia/patología
2.
J Med Genet ; 57(5): 322-330, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31879361

RESUMEN

BACKGROUND: Primary ciliary dyskinesia (PCD), a genetically heterogeneous condition enriched in some consanguineous populations, results from recessive mutations affecting cilia biogenesis and motility. Currently, diagnosis requires multiple expert tests. METHODS: The diagnostic utility of multigene panel next-generation sequencing (NGS) was evaluated in 161 unrelated families from multiple population ancestries. RESULTS: Most (82%) families had affected individuals with biallelic or hemizygous (75%) or single (7%) pathogenic causal alleles in known PCD genes. Loss-of-function alleles dominate (73% frameshift, stop-gain, splice site), most (58%) being homozygous, even in non-consanguineous families. Although 57% (88) of the total 155 diagnostic disease variants were novel, recurrent mutations and mutated genes were detected. These differed markedly between white European (52% of families carry DNAH5 or DNAH11 mutations), Arab (42% of families carry CCDC39 or CCDC40 mutations) and South Asian (single LRRC6 or CCDC103 mutations carried in 36% of families) patients, revealing a striking genetic stratification according to population of origin in PCD. Genetics facilitated successful diagnosis of 81% of families with normal or inconclusive ultrastructure and 67% missing prior ultrastructure results. CONCLUSIONS: This study shows the added value of high-throughput targeted NGS in expediting PCD diagnosis. Therefore, there is potential significant patient benefit in wider and/or earlier implementation of genetic screening.


Asunto(s)
Cilios/genética , Trastornos de la Motilidad Ciliar/genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Alelos , Pueblo Asiatico/genética , Cilios/patología , Trastornos de la Motilidad Ciliar/diagnóstico , Trastornos de la Motilidad Ciliar/patología , Estudios de Cohortes , Etnicidad/genética , Femenino , Homocigoto , Humanos , Masculino , Mutación/genética , Fenotipo
3.
Genome Res ; 25(2): 155-66, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25561519

RESUMEN

RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.


Asunto(s)
Anomalías Múltiples/genética , Discapacidad Intelectual/genética , Mutación , ARN Polimerasa III/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Transcripción Genética , Anomalías Múltiples/diagnóstico , Adolescente , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Encéfalo/patología , Proliferación Celular , Niño , Preescolar , Exoma , Facies , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Imagen por Resonancia Magnética , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Fenotipo , Conformación Proteica , Isoformas de Proteínas , Hermanos , Síndrome , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Pez Cebra
4.
Genet Med ; 20(10): 1246-1254, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29369293

RESUMEN

PURPOSE: Internationally adopted variant interpretation guidelines from the American College of Medical Genetics and Genomics (ACMG) are generic and require disease-specific refinement. Here we developed CardioClassifier ( http://www.cardioclassifier.org ), a semiautomated decision-support tool for inherited cardiac conditions (ICCs). METHODS: CardioClassifier integrates data retrieved from multiple sources with user-input case-specific information, through an interactive interface, to support variant interpretation. Combining disease- and gene-specific knowledge with variant observations in large cohorts of cases and controls, we refined 14 computational ACMG criteria and created three ICC-specific rules. RESULTS: We benchmarked CardioClassifier on 57 expertly curated variants and show full retrieval of all computational data, concordantly activating 87.3% of rules. A generic annotation tool identified fewer than half as many clinically actionable variants (64/219 vs. 156/219, Fisher's P = 1.1 × 10-18), with important false positives, illustrating the critical importance of disease and gene-specific annotations. CardioClassifier identified putatively disease-causing variants in 33.7% of 327 cardiomyopathy cases, comparable with leading ICC laboratories. Through addition of manually curated data, variants found in over 40% of cardiomyopathy cases are fully annotated, without requiring additional user-input data. CONCLUSION: CardioClassifier is an ICC-specific decision-support tool that integrates expertly curated computational annotations with case-specific data to generate fast, reproducible, and interactive variant pathogenicity reports, according to best practice guidelines.


Asunto(s)
Anomalías Cardiovasculares/genética , Pruebas Genéticas , Genoma Humano/genética , Programas Informáticos , Anomalías Cardiovasculares/diagnóstico , Anomalías Cardiovasculares/patología , Biología Computacional , Técnicas de Apoyo para la Decisión , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación
5.
Clin Immunol ; 164: 52-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26812624

RESUMEN

NF-κB essential modulator (NEMO) deficiency causes ectodermal dysplasia with immunodeficiency in males, while manifesting as incontinentia pigmenti in heterozygous females. We report a family with NEMO deficiency, in which a female carrier displayed skewed X-inactivation favoring the mutant NEMO allele associated with symptoms of Behçet's disease. Hematopoietic stem cell transplantation of an affected boy from this donor reconstituted an immune system with retained skewed X-inactivation. After transplantation no more severe infections occurred, indicating that an active wild-type NEMO allele in only 10% of immune cells restores host defense. Yet he developed inflammatory bowel disease (IBD). While gut infiltrating immune cells stained strongly for nuclear p65 indicating restored NEMO function, this was not the case in intestinal epithelial cells - in contrast to cells from conventional IBD patients. These results extend murine observations that epithelial NEMO-deficiency suffices to cause IBD. High anti-TNF doses controlled the intestinal inflammation and symptoms of Behçet's disease.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Quinasa I-kappa B , Enfermedades Inflamatorias del Intestino/inmunología , Alelos , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/genética , Síndrome de Behçet/inmunología , Femenino , Humanos , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Masculino , Hermanos
6.
Am J Hum Genet ; 93(6): 1001-14, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24239381

RESUMEN

blind sterile (bs) is a spontaneous autosomal-recessive mouse mutation discovered more than 30 years ago. Phenotypically, bs mice exhibit nuclear cataracts and male infertility; genetic analyses assigned the bs locus to mouse chromosome 2. In this study, we first positionally cloned the bs locus and identified a putative causative mutation in the Tbc1d20 gene. Functional analysis established the mouse TBC1D20 protein as a GTPase-activating protein (GAP) for RAB1 and RAB2, and bs as a TBC1D20 loss-of-function mutation. Evaluation of bs mouse embryonic fibroblasts (mEFs) identified enlarged Golgi morphology and aberrant lipid droplet (LD) formation. Based on the function of TBC1D20 as a RABGAP and the bs cataract and testicular phenotypes, we hypothesized that mutations in TBC1D20 may contribute to Warburg micro syndrome (WARBM); WARBM constitutes a spectrum of disorders characterized by eye, brain, and endocrine abnormalities caused by mutations in RAB3GAP1, RAB3GAP2, and RAB18. Sequence analysis of a cohort of 77 families affected by WARBM identified five distinct TBC1D20 loss-of-function mutations, thereby establishing these mutations as causative of WARBM. Evaluation of human fibroblasts deficient in TBC1D20 function identified aberrant LDs similar to those identified in the bs mEFs. Additionally, our results show that human fibroblasts deficient in RAB18 and RAB3GAP1 function also exhibit aberrant LD formation. These findings collectively indicate that a defect in LD formation/metabolism may be a common cellular abnormality associated with WARBM, although it remains unclear whether abnormalities in LD metabolism are contributing to WARBM disease pathology.


Asunto(s)
Anomalías Múltiples/genética , Catarata/congénito , Catarata/genética , Córnea/anomalías , Hipogonadismo/genética , Infertilidad Masculina/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Mutación , Atrofia Óptica/genética , Proteínas de Unión al GTP rab1/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Encéfalo/patología , Catarata/diagnóstico , Catarata/metabolismo , Línea Celular , Córnea/metabolismo , Análisis Mutacional de ADN , Facies , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Hipogonadismo/diagnóstico , Hipogonadismo/metabolismo , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/metabolismo , Cristalino/patología , Imagen por Resonancia Magnética , Masculino , Ratones , Microcefalia/diagnóstico , Microcefalia/metabolismo , Atrofia Óptica/diagnóstico , Atrofia Óptica/metabolismo , Linaje , Fenotipo , Alineación de Secuencia , Testículo/patología , Proteínas de Unión al GTP rab1/metabolismo
8.
Kidney Int ; 88(5): 1070-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26131744

RESUMEN

Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a recently discovered rare disease caused by gain-of-function mutations of the V2 vasopressin receptor gene, AVPR2. To date, mutations of Phe229 and Arg137 have been identified as gain-of-function in the V2 vasopressin receptor (V2R). These receptor mutations lead to hyponatremia, which may lead to clinical symptoms in infants. Here we present a newly identified I130N substitution in exon 2 of the V2R gene in a family, causing NSIAD. This I130N mutation resulted in constitutive activity of the V2R with constitutive cyclic adenosine monophosphate (cAMP) generation in HEK293 cells. This basal activity could be blocked by the inverse agonist tolvaptan and arginine-vasopressin stimulation enhanced the cAMP production of I130N-V2R. The mutation causes a biased receptor conformation as the basal cAMP generation activity of I130N does not lead to interaction with ß-arrestin. The constitutive activity of the mutant receptor caused constitutive dynamin-dependent and ß-arrestin-independent internalization. The inhibition of basal internalization using dominant-negative dynamin resulted in an increased cell surface expression. In contrast to the constitutive internalization, agonist-induced endocytosis was ß-arrestin dependent. Thus, tolvaptan could be used for treatment of hyponatremia in patients with NSIAD who carry the I130N-V2R mutation.


Asunto(s)
AMP Cíclico/biosíntesis , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Hiponatremia/genética , Síndrome de Secreción Inadecuada de ADH/genética , Receptores de Vasopresinas/genética , Adulto , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Arrestinas/metabolismo , Benzazepinas/farmacología , Membrana Celular/química , Análisis Mutacional de ADN , Dinaminas/metabolismo , Endocitosis/efectos de los fármacos , Exones , Femenino , Células HEK293 , Humanos , Hiponatremia/tratamiento farmacológico , Masculino , Mutación , Linaje , Receptores de Vasopresinas/análisis , Receptores de Vasopresinas/metabolismo , Tolvaptán , beta-Arrestinas
9.
Hum Genet ; 134(1): 45-51, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25218063

RESUMEN

Holoprosencephaly is a clinically and genetically heterogeneous midline brain malformation associated with neurologic manifestations including developmental delay, intellectual disability and seizures. Although mutations in the sonic hedgehog gene SHH and more than 10 other genes are known to cause holoprosencephaly, many patients remain without a molecular diagnosis. Here we show that a homozygous truncating mutation of STIL not only causes severe autosomal recessive microcephaly, but also lobar holoprosencephaly in an extended consanguineous Pakistani family. STIL mutations have previously been linked to centrosomal defects in primary microcephaly at the MCPH7 locus. Our results thus expand the clinical phenotypes associated with biallellic STIL mutations to include holoprosencephaly.


Asunto(s)
Holoprosencefalia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Microcefalia/genética , Mutación/genética , Adolescente , Adulto , Preescolar , Consanguinidad , Femenino , Humanos , Lactante , Masculino , Pakistán , Adulto Joven
10.
Mol Cell Probes ; 29(5): 271-81, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26050940

RESUMEN

The impact that next-generation sequencing technology (NGS) is having on many aspects of molecular and cell biology, is becoming increasingly apparent. One of the most noticeable outcomes of the new technology in human genetics, has been the accelerated rate of identification of disease-causing genes. Especially for rare, heterogeneous disorders, such as autosomal recessive primary microcephaly (MCPH), the handful of genes previously known to harbour disease-causing mutations, has grown at an unprecedented rate within a few years. Knowledge of new genes mutated in MCPH over the last four years has contributed to our understanding of the disorder at both the clinical and cellular levels. The functions of proteins such as WDR62, CASC5, PHC1, CDK6, CENP-E, CENP-F, CEP63, ZNF335, PLK4 and TUBGPC, have been added to the complex network of critical cellular processes known to be involved in brain growth and size. In addition to the importance of mitotic spindle assembly and structure, centrosome and centriole function and DNA repair and damage response, new mechanisms involving kinetochore-associated proteins and chromatin remodelling complexes have been elucidated. Two of the major contributions to our clinical knowledge are the realisation that primary microcephaly caused by mutations in genes at the MCPH loci is seldom an isolated clinical feature and is often accompanied either by additional cortical malformations or primordial dwarfism. Gene-phenotype correlations are being revisited, with a new dimension of locus heterogeneity and phenotypic variability being revealed.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microcefalia/genética , Análisis de Secuencia de ADN/métodos , Predisposición Genética a la Enfermedad , Humanos , Mutación
11.
Am J Med Genet A ; 164A(9): 2161-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24842779

RESUMEN

Mutations in WDR62 are associated with primary microcephaly; however, they have been reported with wide phenotypic variability. We report on six individuals with novel WDR62 mutations who illustrate this variability and describe three in greater detail. Of the three, one lacks neuromotor development and has severe pachygyria on MRI, another has only delayed speech and motor development and moderate polymicrogyria, and the third has an intermediate phenotype. We observed a rare copy number change of unknown significance, a 17q25qter duplication, in the first severely affected individual. The 17q25 duplication included an interesting candidate gene, tubulin cofactor D (TBCD), crucial in microtubule assembly and disassembly. Sequencing of the non-duplicated allele showed a TBCD missense mutation, predicted to cause a deleterious p.Phe1121Val substitution. Sequencing of a cohort of five patients with WDR62 mutations, including one with an identical mutation and different phenotype, plus 12 individuals with diagnosis of microlissencephaly and another individual with mild intellectual disability (ID) and a 17q25 duplication, did not reveal TBCD mutations. However, immunostaining with tubulin antibodies of cells from patients with both WDR62 and TBCD mutation showed abnormal tubulin network when compared to controls and cells with only the WDR62 mutation. Therefore, we propose that genetic factors contribute to modify the severity of the WDR62 phenotype and, although based on suggestive evidence, TBCD could function as one of such factors.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación/genética , Proteínas del Tejido Nervioso/genética , Secuencia de Bases , Encéfalo/patología , Proteínas de Ciclo Celular , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Embarazo , Tubulina (Proteína)/metabolismo
12.
BMC Pediatr ; 14: 13, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24433235

RESUMEN

BACKGROUND: In term newborns meconium ileus is frequently associated with cystic fibrosis. Reports on meconium ileus in preterm infants being diagnosed with cystic fibrosis early after birth are very scarce. Associations between genotype and phenotype in cystic fibrosis and its particular comorbidities have been reported. CASE PRESENTATION: Two extremely preterm twin infants (26 weeks of gestation) born from a Malaysian mother and a Caucasian father were presented with typical signs of meconium ileus. Despite immediate surgery both displayed a unique and finally lethal course. Mutation analysis revealed a novel, probably pathogenic cystic fibrosis mutation, p.Cys524Tyr. The novel mutation might explain the severity of disease next to typical sequelae of prematurity. CONCLUSION: Preterm neonates with meconium ileus have to be evaluated for cystic fibrosis beyond ethnical boundaries, but may take devastating clinical courses despite early treatment. The novel, potentially pathogenic CF mutation p.Cys524Tyr might be associated with severe meconium ileus in neonates. Disease-modifying loci are important targets for intestinal comorbidity of cystic fibrosis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Enfermedades en Gemelos/genética , Ileus/genética , Enfermedades del Prematuro/genética , Meconio , Resultado Fatal , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Mutación
13.
Eur J Hum Genet ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605126

RESUMEN

Primary ciliary dyskinesia (PCD), a disorder of the motile cilia, is now recognised as an underdiagnosed cause of bronchiectasis. Accurate PCD diagnosis comprises clinical assessment, analysis of cilia and the identification of biallelic variants in one of 50 known PCD-related genes, including HYDIN. HYDIN-related PCD is underdiagnosed due to the presence of a pseudogene, HYDIN2, with 98% sequence homology to HYDIN. This presents a significant challenge for Short-Read Next Generation Sequencing (SR-NGS) and analysis, and many diagnostic PCD gene panels do not include HYDIN. We have used a combined approach of SR-NGS with bioinformatic masking of HYDIN2, and state-of-the-art long-read Nanopore sequencing (LR_NGS), together with analysis of respiratory cilia including transmission electron microscopy and immunofluorescence to address the underdiagnosis of HYDIN as a cause of PCD. Bioinformatic masking of HYDIN2 after SR-NGS facilitated the detection of biallelic HYDIN variants in 15 of 437 families, but compromised the detection of copy number variants. Supplementing testing with LR-NGS detected HYDIN deletions in 2 families, where SR-NGS had detected a single heterozygous HYDIN variant. LR-NGS was also able to confirm true homozygosity in 2 families when parental testing was not possible. Utilising a combined genomic diagnostic approach, biallelic HYDIN variants were detected in 17 families from 242 genetically confirmed PCD cases, comprising 7% of our PCD cohort. This represents the largest reported HYDIN cohort to date and highlights previous underdiagnosis of HYDIN-associated PCD. Moreover this provides further evidence for the utility of LR-NGS in diagnostic testing, particularly for regions of high genomic complexity.

14.
Hum Mutat ; 34(1): 237-47, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23033313

RESUMEN

OFD1, now recognized as a ciliopathy, is characterized by malformations of the face, oral cavity and digits, and is transmitted as an X-linked condition with lethality in males. Mutations in OFD1 also cause X-linked Joubert syndrome (JBTS10) and Simpson-Golabi-Behmel syndrome type 2 (SGBS2). We have studied 55 sporadic and six familial cases of suspected OFD1. Comprehensive mutation analysis in OFD1 revealed mutations in 37 female patients from 30 families; 22 mutations have not been previously described including two heterozygous deletions spanning OFD1 and neighbouring genes. Analysis of clinical findings in patients with mutations revealed that oral features are the most reliable diagnostic criteria. A first, detailed evaluation of brain MRIs from seven patients with cognitive defects illustrated extensive variability with the complete brain phenotype consisting of complete agenesis of the corpus callosum, large single or multiple interhemispheric cysts, striking cortical infolding of gyri, ventriculomegaly, mild molar tooth malformation and moderate to severe cerebellar vermis hypoplasia. Although the OFD1 gene apparently escapes X-inactivation, skewed inactivation was observed in seven of 14 patients. The direction of skewing did not correlate with disease severity, reinforcing the hypothesis that additional factors contribute to the extensive intrafamilial variability.


Asunto(s)
Eliminación de Gen , Mutación , Síndromes Orofaciodigitales/genética , Proteínas/genética , Adolescente , Empalme Alternativo/genética , Secuencia de Bases , Encéfalo/metabolismo , Encéfalo/patología , Niño , Análisis Mutacional de ADN , Exones/genética , Salud de la Familia , Femenino , Estudios de Asociación Genética/métodos , Humanos , Lactante , Intrones/genética , Imagen por Resonancia Magnética , Masculino , Síndromes Orofaciodigitales/patología , Linaje , Inactivación del Cromosoma X
15.
Hum Mutat ; 34(5): 686-96, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23420520

RESUMEN

Warburg Micro syndrome and Martsolf syndrome (MS) are heterogeneous autosomal-recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Causative biallelic germline mutations have been identified in RAB3GAP1, RAB3GAP2, or RAB18, each of which encode proteins involved in membrane trafficking. This report provides an up to date overview of all known disease variants identified in 29 previously published families and 52 new families. One-hundred and forty-four Micro and nine Martsolf families were investigated, identifying mutations in RAB3GAP1 in 41% of cases, mutations in RAB3GAP2 in 7% of cases, and mutations in RAB18 in 5% of cases. These are listed in Leiden Open source Variation Databases, which was created by us for all three genes. Genotype-phenotype correlations for these genes have now established that the clinical phenotypes in Micro syndrome and MS represent a phenotypic continuum related to the nature and severity of the mutations present in the disease genes, with more deleterious mutations causing Micro syndrome and milder mutations causing MS. RAB18 has not yet been linked to the RAB3 pathways, but mutations in all three genes cause an indistinguishable phenotype, making it likely that there is some overlap. There is considerable genetic heterogeneity for these disorders and further gene identification will help delineate these pathways.


Asunto(s)
Catarata/genética , Genotipo , Hipogonadismo/genética , Discapacidad Intelectual/genética , Mutación Missense , Fenotipo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab3/genética , Secuencia de Aminoácidos , Animales , Catarata/patología , Niño , Preescolar , Humanos , Hipogonadismo/patología , Lactante , Discapacidad Intelectual/patología , Imagen por Resonancia Magnética , Masculino , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab3/química
17.
Am J Med Genet A ; 161A(9): 2124-33, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23824879

RESUMEN

5q14.3 deletions spanning and flanking MEF2C as well as intragenic MEF2C mutations have recently been described as a cause of severe intellectual disability, epilepsy, and muscular hypotonia, with variable brain and other anomalies. With an increasing number of patients described, the clinical presentation of the patients appears to be relatively uniform, however the structural brain phenotypes described are variable. We describe two unrelated patients with overlapping de novo interstitial deletions of 4.1 and 1.9 Mb, including MEF2C in 5q14.3, one of whom had a complex brain malformation which could be best described as microcephaly with simplified gyral pattern (MSG). Expression analysis in both patients confirmed haploinsufficiency for MEF2C, decreased MECP2 expression and increased C3ORF58 (DIA1) expression, which is a new finding. A detailed analysis of brain and white matter abnormalities reported in patients with 5q14.3 deletion syndrome to date revealed a greater number of reported abnormalities in patients with deletions not including MEF2C than those with deletions or mutations directly affecting MEF2C. Screening an additional 43 patients with malformations of cerebral cortical development (MCD) for mutations in MEF2C and/or deletions in 5q14.3q15, did not detect any additional mutations, allowing us to conclude that 5q14.3 deletion syndrome is a rare cause of microcephaly with simplified gyral pattern.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 5 , Malformaciones del Desarrollo Cortical/genética , Encéfalo/patología , Preescolar , Hibridación Genómica Comparativa , Facies , Humanos , Factores de Transcripción MEF2/genética , Imagen por Resonancia Magnética , Masculino , Malformaciones del Desarrollo Cortical/diagnóstico
18.
J Clin Med ; 13(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38202257

RESUMEN

Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait, due to a single heterozygous loss-of-function variant, usually in ACVRL1 (encoding activin receptor-like kinase 1 [ALK1]), ENG (encoding endoglin [CD105]), or SMAD4. In a consecutive single-centre series of 37 positive clinical genetic tests performed in 2021-2023, a skewed distribution pattern was noted, with 30 of 32 variants reported only once, but ACVRL1 c.1231C>T (p.Arg411Trp) identified as the disease-causal gene in five different HHT families. In the same centre's non-overlapping 1992-2020 series where 110/134 (82.1%) HHT-causal variants were reported only once, ACVRL1 c.1231C>T (p.Arg411Trp) was identified in nine further families. In a 14-country, four-continent HHT Mutation Database where 181/250 (72.4%) HHT-causal variants were reported only once, ACVRL1 c.1231C>T (p.Arg411Trp) was reported by 12 different laboratories, the adjacent ACVRL1 c.1232G>A (p.Arg411Gln) by 14, and ACVRL1 c.1120C>T (p.Arg374Trp) by 18. Unlike the majority of HHT-causal ACVRL1 variants, these encode ALK1 protein that reaches the endothelial cell surface but fails to signal. Six variants of this type were present in the three series and were reported 6.8-25.5 (mean 8.9) times more frequently than the other ACVRL1 missense variants (all p-values < 0.0039). Noting lower rates of myocardial infarction reported in HHT, we explore potential mechanisms, including a selective paradigm relevant to ALK1's role in the initiating event of atherosclerosis, where a plausible dominant negative effect of these specific variants can be proposed. In conclusion, there is an ~9-fold excess of kinase-inactive, cell surface-expressed ACVRL1/ALK1 pathogenic missense variants in HHT. The findings support further examination of differential clinical and cellular phenotypes by HHT causal gene molecular subtypes.

19.
Eur J Hum Genet ; 31(9): 1003-1009, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37443332

RESUMEN

Inherited cardiomyopathies and arrhythmias (ICAs) are a prevalent and clinically heterogeneous group of genetic disorders that are associated with increased risk of sudden cardiac death and heart failure. Making a genetic diagnosis can inform the management of patients and their at-risk relatives and, as such, molecular genetic testing is now considered an integral component of the clinical care pathway. However, ICAs are characterised by high genetic and allelic heterogeneity, incomplete / age-related penetrance, and variable expressivity. Therefore, despite our improved understanding of the genetic basis of these conditions, and significant technological advances over the past two decades, identifying and recognising the causative genotype remains challenging. As clinical genetic testing for ICAs becomes more widely available, it is increasingly important for clinical laboratories to consolidate existing knowledge and experience to inform and improve future practice. These recommendations have been compiled to help clinical laboratories navigate the challenges of ICAs and thereby facilitate best practice and consistency in genetic test provision for this group of disorders. General recommendations on internal and external quality control, referral, analysis, result interpretation, and reporting are described. Also included are appendices that provide specific information pertinent to genetic testing for hypertrophic, dilated, and arrhythmogenic right ventricular cardiomyopathies, long QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia.


Asunto(s)
Cardiomiopatías , Síndrome de QT Prolongado , Humanos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Pruebas Genéticas , Muerte Súbita Cardíaca/etiología , Síndrome de QT Prolongado/diagnóstico
20.
J Med Genet ; 48(6): 396-406, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21441262

RESUMEN

BACKGROUND: Submicroscopic deletions in 14q12 spanning FOXG1 or intragenic mutations have been reported in patients with a developmental disorder described as a congenital variant of Rett syndrome. This study aimed to further characterise and delineate the phenotype of FOXG1 mutation positive patients. METHOD: The study mapped the breakpoints of a 2;14 translocation by fluorescence in situ hybridisation and analysed three chromosome rearrangements in 14q12 by cytogenetic analysis and/or array comparative genomic hybridisation. The FOXG1 gene was sequenced in 210 patients, including 129 patients with unexplained developmental disorders and 81 MECP2 mutation negative individuals. RESULTS: One known mutation, seen in two patients, and nine novel mutations of FOXG1 including two deletions, two chromosome rearrangements disrupting or displacing putative cis-regulatory elements from FOXG1, and seven sequence changes, are reported. Analysis of 11 patients in this study, and a further 15 patients reported in the literature, demonstrates a complex constellation of features including mild postnatal growth deficiency, severe postnatal microcephaly, severe mental retardation with absent language development, deficient social reciprocity resembling autism, combined stereotypies and frank dyskinesias, epilepsy, poor sleep patterns, irritability in infancy, unexplained episodes of crying, recurrent aspiration, and gastro-oesophageal reflux. Brain imaging studies reveal simplified gyral pattern and reduced white matter volume in the frontal lobes, corpus callosum hypogenesis, and variable mild frontal pachgyria. CONCLUSIONS: These findings have significantly expanded the number of FOXG1 mutations and identified two affecting possible cis-regulatory elements. While the phenotype of the patients overlaps both classic and congenital Rett syndrome, extensive clinical evaluation demonstrates a distinctive and clinically recognisable phenotype which the authors suggest designating as the FOXG1 syndrome.


Asunto(s)
Cromosomas Humanos Par 14/química , Factores de Transcripción Forkhead/genética , Estudios de Asociación Genética , Proteínas del Tejido Nervioso/genética , Síndrome de Rett/clasificación , Síndrome de Rett/genética , Secuencia de Bases , Niño , Preescolar , Hibridación Genómica Comparativa , Cuerpo Calloso/patología , Discinesias/genética , Femenino , Genotipo , Humanos , Discapacidad Intelectual/genética , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Microcefalia/genética , Datos de Secuencia Molecular , Tipificación Molecular , Mutación , Fenotipo , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA