RESUMEN
Natural products and their analogues have contributed significantly to treatment options, especially for anti-inflammatory and infectious diseases. Thus, the primary objective of this work was to compare the bioactivity profiles of selected medicinal plants that are historically used in folk medicine to treat inflammation and infections in the body. Chemical HPTLC fingerprinting was used to assess antioxidant, phenolic and flavonoid content, while bioassay-guided HPTLC was used to detect compounds with the highest antibacterial and anti-inflammatory activities. The results of this study showed that green tea leaf, walnut leaf, St. John's wort herb, wild thyme herb, European goldenrod herb, chamomile flower, and immortelle flower extracts were strong radical scavengers. Green tea and nettle extracts were the most active extracts against E. coli, while calendula flower extract showed significant potency against S. aureus. Furthermore, green tea, greater celandine, and fumitory extracts exhibited pronounced potential in suppressing COX-1 activity. The bioactive compounds from the green tea extract, as the most bioactive, were isolated by preparative thin-layer chromatography and characterized with their FTIR spectra. Although earlier studies have related green tea's anti-inflammatory properties to the presence of catechins, particularly epigallocatechin-3-gallate, the FTIR spectrum of the compound from the most intense bioactive zone showed the strongest anti-inflammatory activity can be attributed to amino acids and heterocyclic compounds. As expected, antibacterial activity in extracts was related to fatty acids and monoglycerides.
Asunto(s)
Productos Biológicos , Plantas Medicinales , Antioxidantes/farmacología , Antioxidantes/química , Plantas Medicinales/química , Cromatografía en Capa Delgada/métodos , Staphylococcus aureus , Escherichia coli , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Antiinflamatorios/farmacología , Bioensayo , TéRESUMEN
A novel HPLC-ESI-MS/MS method for simultaneous gonadotropin-releasing hormone (GnRH) analogs and somatostatin analog quantitation was developed and validated. The developed method was successfully applied to pharmacokinetic studies. The sample preparation process included solid-phase extraction (SPE). Effective chromatographic separation of the analytes and internal standard (dalargin) was achieved with a C18 column, using a gradient elution with two mobile phases: 0.1% v/v formic acid (aqueous solution) and 0.1% v/v formic acid (acetonitrile solution). The linearity of the method was demonstrated within a concentration range of 0.5-20 ng/mL, with correlation coefficients between 0.998-0.999 for goserelin, buserelin, triptorelin, and octreotide, respectively. The relative standard deviation (RSD, %) values for method accuracy and precision did not exceed 20% at the lower level of quantitation (LLOQ) or 15% at other concentration levels.
Asunto(s)
Plasma , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados , PéptidosRESUMEN
The effect of spontaneous fermentation by lactic acid bacteria on the extraction yield of bioactive compounds and antioxidant activity from rosemary leaf extracts was investigated using high-performance thin-layer chromatography (HPTLC). Brining and spontaneous fermentation with lactic acid bacteria more than doubled extraction of polyphenolics and antioxidants from the rosemary leaves. The results show that lactic acid fermentation enhances antioxidant activity in extracts by increasing the total phenolic content but does not increase extraction of phytosterols. Increased extraction of phenolic oxidants during fermentation assisted extraction, results from the in situ generated natural eutectic solvent from the plant sample. ATR-FTIR spectra from the bioactive bands suggests that this increased antioxidant activity is associated with increased extraction of rosmarinic acid, depolymerised lignin, abietane diterpenoids and 15-hydroxy-7-oxodehydroabietic acid.
Asunto(s)
Antioxidantes/química , Antioxidantes/metabolismo , Lactobacillales/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Rosmarinus/química , Rosmarinus/metabolismo , Abietanos/química , Abietanos/metabolismo , Cromatografía en Capa Delgada , Cinamatos/química , Cinamatos/metabolismo , Depsidos/química , Depsidos/metabolismo , Fermentación , Humanos , Lignina/química , Lignina/metabolismo , Fenoles/química , Fenoles/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Ácido RosmarínicoRESUMEN
Marine organisms produce an array of biologically active natural products, many of which have unique structures that have not been found in terrestrial organisms. Hence, marine algae provide a unique source of bioactive compounds. The present study investigated 19 marine algae and one seagrass collected from Torquay beach, Victoria, Australia. High-performance thin-layer chromatography (HPTLC) hyphenated with microchemical (DPPHâ¢, p-anisaldehyde, and Fast Blue B) and biochemical (α-amylase and acetylcholine esterase (AChE) enzymatic) derivatizations was used to evaluate antioxidant activity, presence of phytosterols and phenolic lipids, α-amylase and AChE inhibitory activities of extract components. Significant α-amylase and AChE inhibitory activities were observed in samples 2, 6, 8 and 10. Antioxidant activities in the samples were found to be correlated to phytosterol content (R² = 0.78), but was not found to be related to either α-amylase or AChE inhibitory activities. α-Amylase inhibitory activities were correlated to AChE inhibition (R² = 0.77) and attributed to the phytosterol content, based on the similar peak position in the chromatograms with the ß-sitosterol chromatogram. Samples 1, 8, and especially sample 20, were found to contain phenolic lipids (alkyl resorcinol derivatives) with significant antioxidant activities. The results suggest that these marine species have a significant number of bioactive compounds that warrant further investigation.
Asunto(s)
Productos Biológicos/farmacología , Extractos Vegetales/farmacología , Algas Marinas/química , Acetilcolinesterasa/metabolismo , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Australia , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Compuestos de Bifenilo/química , Compuestos de Bifenilo/aislamiento & purificación , Compuestos de Bifenilo/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/aislamiento & purificación , Inhibidores de la Colinesterasa/farmacología , Cromatografía Líquida de Alta Presión/métodos , Cromatografía en Capa Delgada/métodos , Pruebas de Enzimas , Fitosteroles/química , Fitosteroles/aislamiento & purificación , Fitosteroles/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismoRESUMEN
The goal of preparative chromatography is to isolate suitable amounts of compound(s) at the required purity in the most cost-effective way. This study analyses the power of High-performance thin-layer chromatography (HPTLC) guided preparative flash chromatography to separate and isolate bioactive compounds from an olive flower extract for their further characterisation via spectroscopy. The structure and purity of isolated bioactive compounds were assessed using Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. Flash chromatography of the olive flower extract successfully isolated pure oleanolic and maslinic acids. Moreover, the flash chromatography of the extract allowed isolation and phytochemical analysis of the most lipophilic fraction of the extract, which was found to contain n-eicosane and n-(Z)-eicos-5-ene, that has not been isolated previously with preparative TLC.
Asunto(s)
Flores , Espectroscopía de Resonancia Magnética , Olea , Extractos Vegetales , Flores/química , Cromatografía en Capa Delgada/métodos , Olea/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier , Triterpenos/análisis , Triterpenos/aislamiento & purificación , Triterpenos/química , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/análisis , Ácido Oleanólico/química , Ácido Oleanólico/análogos & derivados , Cromatografía Líquida de Alta Presión/métodosRESUMEN
Olive trees are one of the most widely cultivated fruit trees in the world. The chemical compositions and biological activities of olive tree fruit and leaves have been extensively researched for their nutritional and health-promoting properties. In contrast, limited data have been reported on olive flowers. The present study aimed to analyse bioactive compounds in olive flower extracts and the effect of fermentation-assisted extraction on phenolic content and antioxidant activity. High-performance thin-layer chromatography (HPTLC) hyphenated with the bioassay-guided detection and spectroscopic identification of bioactive compounds was used for the analysis. Enzymatic and bacterial in situ bioassays were used to detect COX-1 enzyme inhibition and antibacterial activity. Multiple zones of antibacterial activity and one zone of COX-1 inhibition were detected in both, non-fermented and fermented, extracts. A newly developed HPTLC-based experimental protocol was used to measure the high-maximal inhibitory concentrations (IC50) for the assessment of the relative potency of the extracts in inhibiting COX-1 enzyme and antibacterial activity. Strong antibacterial activities detected in zones 4 and 7 were significantly higher in comparison to ampicillin, as confirmed by low IC50 values (IC50 = 57-58 µg in zone 4 and IC50 = 157-167 µg in zone 7) compared to the ampicillin IC50 value (IC50 = 495 µg). The COX-1 inhibition by the extract (IC50 = 76-98 µg) was also strong compared to that of salicylic acid (IC50 = 557 µg). By comparing the locations of the bands to coeluted standards, compounds from detected bioactive bands were tentatively identified. The eluates from bioactive HPTLC zones were further analysed by FTIR NMR, and LC-MS spectroscopy. Multiple zones of antibacterial activity were associated with the presence of triterpenoid acids, while COX-1 inhibition was related to the presence of long-chain fatty acids.
Asunto(s)
Olea , Olea/química , Cromatografía en Capa Delgada/métodos , Árboles , Extractos Vegetales/química , Flores/química , Antibacterianos/farmacología , Antibacterianos/análisis , Antioxidantes/farmacología , Espectroscopía de Resonancia Magnética , Ampicilina/análisis , Bioensayo/métodosRESUMEN
Iron-based materials (IBMs) have shown promise as adsorbents due to their unique physicochemical properties. This review provides an overview of the different types of IBMs, their synthesis methods, and their properties. Results found in the adsorption of emerging contaminants to a wide range of IBMs are discussed. The IBMs used were evaluated in terms of their maximum uptake capacity, with special consideration given to environmental conditions such as contact time, solution pH, initial pollutant concentration, etc. The adsorption mechanisms of pollutants are discussed taking into account the results of kinetic, isotherm, thermodynamic studies, surface complexation modelling (SCM), and available spectroscopic data. A current overview of molecular modeling and simulation studies related to density functional theory (DFT), surface response methodology (RSM), and artificial neural network (ANN) is presented. In addition, the reusability and suitability of IBMs in real wastewater treatment is shown. The review concludes with the strengths and weaknesses of current research and suggests ideas for future research that will improve our ability to remove contaminants from real wastewater streams.
Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Hierro , Adsorción , Termodinámica , CinéticaRESUMEN
This study compares different solvent systems with the use of spontaneous fermentation on the phytochemical composition of leaf extracts from a locally grown white variety of common fig (Ficus carica Linn.). The aim was to detect and identify bioactive compounds that are responsible for acetylcholinesterase (AChE), α-amylase and cyclooxygenase-1 (COX-1) enzyme inhibition, and compounds that exhibit antimicrobial activity. Bioactive zones in chromatograms were detected by combining High-performance thin-layer chromatography (HPTLC) with enzymatic and biological assays. A new experimental protocol for measuring the relative half-maximum inhibitory concentration (IC50) was designed to evaluate the potency of the extracts compared to the potency of known inhibitors. Although the IC50 of the fig leaf extract for α-amylase and AChE inhibition were significantly higher when compared to IC50 for acarbose and donepezil, the COX-1 inhibition by the extract (IC50 = 627 µg) was comparable to that of salicylic acid (IC50 = 557 µg), and antimicrobial activity of the extract (IC50 = 375-511 µg) was similar to ampicillin (IC50 = 495 µg). Four chromatographic zones exhibited bioactivity. Compounds from detected bioactive bands were provisionally identified by comparing the band positions to coeluted standards, and by Fourier transform infrared (FTIR) spectra from eluted zones. Flash chromatography was used to separate selected extract into fractions and isolate fractions that are rich in bioactive compounds for further characterisation with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) analysis. The main constituents identified were umbelliferon (zone 1), furocoumarins psoralen and bergapten (zone 2), different fatty acids (zone 3 and 4), and pentacyclic triterpenoids (calotropenyl acetate or lupeol) and stigmasterol (zone 4).
Asunto(s)
Antiinfecciosos , Ficus , Cromatografía en Capa Delgada , Ficus/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Acetilcolinesterasa , alfa-Amilasas , Triterpenos Pentacíclicos , Antiinfecciosos/farmacologíaRESUMEN
Extracts of two Salvia species, Salvia apiana (white sage) and Salvia officinalis (common sage) were screened for phytoconstituents with the ability to act as antidiabetic, cognitive enhancing, or antimicrobial agents, by hyphenation of high-performance thin-layer chromatography with enzymatic and microbial effect directed assays. Two bioactive zones with α-amylase inhibition (zone 1 and zone 2), 3 zones for acetylcholinesterase inhibition (zones 3, 4 and 5), and two zones for antimicrobial activity (zones 4 and 5) were detected. The compounds from the five bioactive zones were initially identified by coelution with standards and comparing the RF values of standards to the bioautograms. Identity was confirmed with ATR-FTIR spectra of the isolated compounds from the bioactive zones. A significantly higher α-amylase and acetylcholinesterase inhibition of S. apiana leaf extract was associated with a higher flavonoid and diterpenoid content. Fermented S. officinalis extract exhibited a significantly higher ability to inhibit α-amylase compared to other non-fermented extracts from this species, due to increased extraction of flavonoids. The ATR-FTIR spectra of 2 zones with α-amylase inhibition, indicated that flavonoids and phenolic acids were responsible for α-amylase inhibition. Multiple zones of acetylcholinesterase inhibition were related to the presence of phenolic abietane diterpenoids and triterpenoid acids. The presence of abietane diterpenoids and triterpenoid acids was also found responsible for the mild antimicrobial activity. Flash chromatography was used to isolate sufficient amounts of bioactive compounds for further characterisation via NMR and MS spectroscopy. Five compounds were assigned to the zones where bioactivity was observed: cirsimaritin (zone 1), a caffeic acid polymer (zone 2), 16-hydroxyrosmanol (zone 3), 16-hydroxycarnosic acid (zone 4), oleanolic and ursolic acids (zone 5).
Asunto(s)
Antiinfecciosos , Salvia , Triterpenos , Salvia/química , Acetilcolinesterasa , Cromatografía en Capa Delgada/métodos , Abietanos , Antiinfecciosos/farmacología , Flavonoides , alfa-Amilasas , Extractos Vegetales/química , Antioxidantes/farmacologíaRESUMEN
Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl's quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry.
Asunto(s)
Joyas/normas , Pinctada , Análisis Espectral/métodos , Animales , Color , Redes Neurales de la ComputaciónRESUMEN
In this study, effect-directed analysis (EDA) (i.e. TLC hyphenated with an in situ MTT (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) antimicrobial assay), was used for screening and identification of antimicrobials in olive leaf extract. EDA detected that the same compounds exhibited significant antimicrobial activity against bacterial species of the genera Enterococcus (E. faecalis), Escherichia (E. coli), Streptococcus (S. mutans) and Staphylococcus (S. aureus). Flash chromatography-fractionation was used to isolate antimicrobial compounds in olive leaf extract. The active compounds were identified as maslinic acid and oleanolic acid by comparing RF values of the detected active bands with the standard reference materials, with identity confirmed with NMR and ATR-FTIR spectroscopy. Maslinic and oleanolic acids were tested on the E. faecalis strain (which displayed the highest sensitivity in the MTT assay) to determine their inhibiting concentration 50% (IC50) and minimum bactericidal concentrations.
Asunto(s)
Antiinfecciosos , Ácido Oleanólico , Antibacterianos/química , Antibacterianos/farmacología , Cromatografía en Capa Delgada , Escherichia coli , Pruebas de Sensibilidad Microbiana , Olea , Ácido Oleanólico/química , Extractos Vegetales/química , Staphylococcus aureusRESUMEN
Pittosporum angustifolium, known as gumbi gumbi, is a native Australian plant, which has traditionally been used as an Aboriginal medicine. This study investigates the effect of different solvents and extractive fermentation on the content and natural products composition of Pittosporum angustifolium extracts, and compares their antioxidant activity, in vitro α-amylase inhibition, and anti-inflammatory properties. Anti-inflammatory activity of the extracts was determined by measuring the inhibition of nitric oxide (NO) production. Extracts were characterised with FTIR-ATR spectroscopy, and screened for antioxidant activities and α-amylase inhibitory activity via High-performance thin-layer chromatography (HPTLC)-Effect-directed analysis (EDA) with direct bioautography. HPTLC combined with chemical derivatization and bioassays was used for EDA screening. The results show that lactic acid fermentation of gumbi gumbi leaves boosts the antioxidant activity in extracts by increasing the total phenolic content, but does not affect (increase or decrease) α-amylase inhibitory activity or nitrogen scavenging/anti-inflammatory activity. Analysis of the ATR-FTIR spectra from the band at RFâ¯=â¯0.85 that inhibits α-amylase, suggests that fatty acid esters are responsible for the enzyme inhibition; both saturated fatty acid esters in unfermented extracts and unsaturated fatty acid esters in fermented extracts. The ATR-FTIR spectra of the polyphenolics in fermented extracts (RFâ¯=â¯0.15-0.20) suggests the presence of soluble lignin fragments (i.e. lignins depolymerized into monomers and oligomers during the fermentation process).
Asunto(s)
Antioxidantes/análisis , Extractos Vegetales/análisis , Rosales/química , Antioxidantes/química , Antioxidantes/farmacología , Bioensayo , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Fermentación , Extractos Vegetales/química , Extractos Vegetales/farmacología , alfa-Amilasas/antagonistas & inhibidoresRESUMEN
A high-performance thin-layer chromatography with microchemical derivatization and bioassay guided detection was used for bioanalytical profiling of selected marigold plant extracts. Anisaldehyde/sulfuric acid reagent and thymol/sulfuric acid reagent were used to visualize separated components on the chromatograms. Antioxidant activity and α-amylase inhibition were assessed with 2 bioassays, DPPH assay to detect free radical scavengers and starch-iodineassay method to detect compounds that inhibit α-amylase. The highest antioxidant activity of 10.12 µg of gallic acid equivalents (GAE) per 20 µL of extract was measured in extract from Tagetes flowers and the lowest in the extract from Calendula leaves with 5.10 µg of GAE. Multiple zones of α-amylase inhibition were detected. A detailed analysis of the ATR-FTIR spectra from the bands at RF = 0.24 suggest that faradiol esters and saturated fatty acids esters, palmitic acid, myristic acid, and lauric acid are responsible for α-amylase inhibition, unsaturated fatty acids for the band at RF = 0.51 and phytoecdysteroids for the band at RF = 0.53.
RESUMEN
Many native Australian plants have a long history of use as medicinal and culinary herbs and some are considered to be equivalents to the Mediterranean herbs. However, while therapeutic properties of Mediterranean herbs are well documented, there is limited information on the medicinal use of the Australian native herbs. Extracts of five native Australian plants were characterised with FTIR-ATR spectroscopy in the fingerprint region and screened for enzyme inhibitory and antioxidant activities via effect-directed analysis (EDA) based on bioautography. High-performance thin-layer chromatography (HPTLC) coupled with microchemical and biochemical derivatization assays was used for EDA screening. Detected compounds with biological activities were identified via FTIR-ATR spectroscopy. All herbs showed antioxidant activity with lemon myrtle being the most active. The α-amylase inhibition, observed in native thyme, sea parsley and native bush was associated with the presence of phenolic acids, chlorogenic acid and caffeic acid. The investigation of botanicals by a fast, hyphenated HPTLC method, has allowed an effect-directed high-throughput screening, fast characterization of complex mixtures and detection of biologically active phytochemicals (bioprofiling).
Asunto(s)
Bioensayo/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía en Capa Delgada/métodos , Extractos Vegetales/análisis , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Australia , Fitoquímicos/químicaRESUMEN
This study focuses on the health benefits of several fresh herbs that are commonly used in the Mediterranean diet. Antioxidant activity, phytosterol content and α-amylase inhibitory activity of fresh basil, lavender, oregano, rosemary, sage, and thyme are analyzed and compared. High-performance thin-layer chromatography (HPTLC) combined with effect directed analysis was used to detect and quantify biological active compounds on chromatograms. The highest antioxidant activity was measured in the extract from oregano leaf, while the highest terpenoid content was in basil leaf extract. All extracts except lavender leaf and lavender flower extracts showed α-amylase inhibition. The same compound at hRF = 68 in basil, oregano, rosemary, sage, and thyme extracts was responsible for α-amylase inhibition. Combined with effect-directed assays and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, hyphenated HPTLC allowed a fast characterization of the active compound. ATR spectral analysis of this band tentatively identified oleanolic acid (or its derivative) to be responsible for the α-amylase inhibition.
Asunto(s)
Lamiaceae/química , Extractos Vegetales/química , alfa-Amilasas/antagonistas & inhibidores , Antioxidantes/farmacología , Bioensayo , Cromatografía en Capa Delgada , Inhibidores Enzimáticos/farmacología , Fitosteroles/análisis , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Terpenos/análisisRESUMEN
Aromatherapy with essential oils (EOs) has been linked to improvement of cognitive function in patients with dementia. In order to act systemically, active EO components must be absorbed through the skin, enter the systemic circulation, and cross the blood brain barrier (BBB). Thus, the aim of this work was to develop quantitative structure activity relationships (QSARs), to predict skin and blood barrier penetrative abilities of 119 terpenoids from EOs used in aromatherapy. The first model was based on experimentally measured skin permeability for 162 molecules, and the second model on BBB permeability for 138 molecules. Each molecule was encoded with 63 calculated molecular descriptors and an artificial neural network was used to correlate molecular descriptors to permeabilities. Developed QSAR models confirm that EOs components penetrate through the skin and across the BBB. Some well-known descriptors, such as log P (lipophilicity), molecular size and shape, dominated the QSAR model for BBB permeability. Compounds with the highest predicted BBB penetration were hydrocarbon terpenes with the smallest molecular size and highest lipophilicity. Thus, molecular size is a limiting factor for penetration. Compounds with the highest skin permeability have slightly higher molecular size, high lipophilicity and low polarity. Our work shows that a major disadvantage of novel multitarget compounds developed for the treatment of Alzheimer's disease is the size of molecules, which cause problems in their delivery to the brain. Therefore, there is a need for smaller compounds, which possess more desirable physicochemical properties and pharmacokinetics, in addition to targeted biological effects.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Aromaterapia , Demencia , Aceites Volátiles , Barrera Hematoencefálica , Humanos , Permeabilidad , Relación Estructura-Actividad CuantitativaRESUMEN
The aim of this study was to evaluate marine algae extracts in terms of their anti-inflammatory activity using a combination of chromatographic separation and chemical detection with subsequent infrared vibrational spectroscopy identification. Extraction parameters, chemical fingerprint, and the activity levels were considered for the method optimization. High-performance thin-layer chromatography (HPTLC) combined with microchemical derivatization, was used to separate and detect bioactive compounds with antioxidant activity and anti-inflammatory activities, and to detect different classes of terpenoids. Infrared attenuated total reflectance (ATR) spectral analysis of the bands with bioactive compounds, identified sulfated polysaccharides to be responsible for the anti-inflammatory activity in extracts of brown algae Carpoglossum confluens and Phyllospora comosa. Steroids as unique antioxidants with significant free radical scavenging activities were observed in extracts of brown algae Cystophora platylobium, Cystophora retorta, Carpoglossum confluens and Phyllospora comosa. HPTLC combined with biochemical assays and FTIR-ATR spectrometry was demonstrated to be a straightforward strategy for bioprofiling marine algae extracts.
Asunto(s)
Phaeophyceae , Extractos Vegetales , Antioxidantes/farmacología , Cromatografía en Capa Delgada , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
As total life expectancy increases, the prevalence of age-related diseases such as diabetes and Alzheimer's disease is also increasing. Many hypotheses about Alzheimer's disease have been developed, including cholinergic neuron damage, oxidative stress, and inflammation. Acetylcholine is a major neurotransmitter in the brain and cholinergic deficits leads to cognitive dysfunction and decline. Recent studies have linked diabetes as a risk factor in developing Alzheimer's disease and other types of dementia. The incidence of patients with type II diabetes and increased levels and activity of α-amylase is higher in patients with dementia. It has been shown that aromatherapy with essential oils from the mint family can improve cognitive performance in Alzheimer's disease patients. Selected monoterpenoids from these essential oils are reported to inhibit acetylcholinesterase, both in vitro and in vivo. Terpenoids are small, fat-soluble organic molecules that can transfer across nasal mucosa if inhaled, or penetrate through the skin after topical application, enter into the blood and cross the blood-brain barrier. Recent evidence supports the idea that the common constituents of essential oils also inhibit α-amylase, a starch digestive enzyme that plays an important role in the control of diabetes. The mint family is a fragrant plant family that contains most of the culinary herbs found in the Mediterranean diet. The Mediterranean diet is considered to be one of the healthiest diets in the world, and is found to be beneficial not only for the heart but also for the brain. Herbs used in this diet are rich in antioxidants that can prevent oxidative damage caused by free radicals. However, our study shows that they also contain biologically active compounds with potent α-amylase and acetylcholinesterase inhibitory activities. Consumption of fresh herbs can help boost memory and reduce sugar levels in the body. The use of herbs as a functional food could lead to significant improvements in health. Cognitive stimulation with medical food and medical herbs could delay development of cognitive decline, and improve the quality of life of Alzheimer's disease patients. This effect can be enhanced if combined with aromatherapy, topically or by inhalation, and/or by ingestion. Terpenes and terpenoids, the primary constituents of these essential oils are small, lipid soluble organic molecules that can be absorbed through the skin or across nasal mucosa into the systemic blood circulation. Many terpenes can also cross the blood-brain barrier. Therefore, topical application or inhalation of essential oils will also produce a systemic effect.
RESUMEN
A high-performance thin-layer chromatography (HPTLC) method was developed for quantification of α-amylase inhibitory activity and stigmasterol content in ant plant extracts. An improved HPTLC method for the determination of total free radical scavenging activity in samples using DPPH⢠is also reported. For quantification of α-amylase inhibitory activity, the developed HPTLC plate is dipped into an α-amylase solution, and the bioautogram is then incubated at 25 °C for 30 min under humid conditions. For visualization of enzyme inhibitory activity, the starch test with an iodine indicator solution is used. The blue zone observed comes from the starch-iodine complex formed from starch that was not hydrolyzed by the amylase due to enzyme inhibition by the compound(s) present in the sample. The area of the blue zones was used to compare and quantify relative α-amylase inhibitory activity in different extracts. Location of the blue zones (hRF) on the plate was used to detect compounds that are responsible for the α-amylase inhibitory activity. Relative α-amylase activity was not related to the antioxidant activity, but was highly correlated with the stigmasterol content in the sample extracts (R = 0.95). Therefore, plant sterols present in the extracts might be responsible for α-amylase inhibitory activities in the extracts. â¢The developed method for quantification of α-amylase inhibitory activity provides an efficient and effective tool that can be used to screen, detect and quantify α-amylase inhibitory activity in plant extracts.â¢The proposed protocol is easy to run, involves minimal sample preparation, with multiple samples able to be analyzed in parallel on the same chromatographic plate, in a short time.â¢There were significant differences in α-amylase inhibitory activity, stigmasterol content, and total free radical scavenging activity between methanol, ethanol, dichloromethane, and ethyl acetate ant plant extracts.
RESUMEN
An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.