Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Sci ; 129(1): 191-205, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26644182

RESUMEN

PHD1 (also known as EGLN2) belongs to a family of prolyl hydroxylases (PHDs) that are involved in the control of the cellular response to hypoxia. PHD1 is also able to regulate mitotic progression through the regulation of the crucial centrosomal protein Cep192, establishing a link between the oxygen-sensing and the cell cycle machinery. Here, we demonstrate that PHD1 is phosphorylated by CDK2, CDK4 and CDK6 at S130. This phosphorylation fluctuates with the cell cycle and can be induced through oncogenic activation. Functionally, PHD1 phosphorylation leads to increased induction of hypoxia-inducible factor (HIF) protein levels and activity during hypoxia. PHD1 phosphorylation does not alter its intrinsic enzymatic activity, but instead decreases the interaction between PHD1 and HIF1α. Interestingly, although phosphorylation of PHD1 at S130 lowers its activity towards HIF1α, this modification increases the activity of PHD1 towards Cep192. These results establish a mechanism by which cell cycle mediators, such as CDKs, temporally control the activity of PHD1, directly altering the regulation of HIF1α and Cep192.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Fosfoserina/metabolismo , Secuencia de Aminoácidos , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Semivida , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/química , Interfase/efectos de los fármacos , Mitógenos/farmacología , Datos de Secuencia Molecular , Oncogenes , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
2.
Chromosome Res ; 19(3): 307-19, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21461697

RESUMEN

Proper mitotic chromosome structure is essential for faithful chromosome segregation. Mounting evidence suggests that mitotic chromosome assembly is a progressive, dynamic process that requires topoisomerase II, condensins and cohesin and the activity of several signalling molecules. Current results suggest how these different activities might interact to achieve the familiar form of the mitotic chromosome.


Asunto(s)
Cromosomas/química , Cromosomas/metabolismo , Mitosis/genética , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Humanos , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Cohesinas
3.
PLoS Genet ; 5(4): e1000451, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19360121

RESUMEN

CLK-2/TEL2 is essential for viability from yeasts to vertebrates, but its essential functions remain ill defined. CLK-2/TEL2 was initially implicated in telomere length regulation in budding yeast, but work in Caenorhabditis elegans has uncovered a function in DNA damage response signalling. Subsequently, DNA damage signalling defects associated with CLK-2/TEL2 have been confirmed in yeast and human cells. The CLK-2/TEL2 interaction with the ATM and ATR DNA damage sensor kinases and its requirement for their stability led to the proposal that CLK-2/TEL2 mutants might phenocopy ATM and/or ATR depletion. We use C. elegans to dissect developmental and cell cycle related roles of CLK-2. Temperature sensitive (ts) clk-2 mutants accumulate genomic instability and show a delay of embryonic cell cycle timing. This delay partially depends on the worm p53 homolog CEP-1 and is rescued by co-depletion of the DNA replication checkpoint proteins ATL-1 (C. elegans ATR) and CHK-1. In addition, clk-2 ts mutants show a spindle orientation defect in the eight cell stages that lead to major cell fate transitions. clk-2 deletion worms progress through embryogenesis and larval development by maternal rescue but become sterile and halt germ cell cycle progression. Unlike ATL-1 depleted germ cells, clk-2-null germ cells do not accumulate DNA double-strand breaks. Rather, clk-2 mutant germ cells arrest with duplicated centrosomes but without mitotic spindles in an early prophase like stage. This germ cell cycle arrest does not depend on cep-1, the DNA replication, or the spindle checkpoint. Our analysis shows that CLK-2 depletion does not phenocopy PIKK kinase depletion. Rather, we implicate CLK-2 in multiple developmental and cell cycle related processes and show that CLK-2 and ATR have antagonising functions during early C. elegans embryonic development.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Ciclo Celular , Proteínas de Unión a Telómeros/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proliferación Celular , Desarrollo Embrionario , Células Germinativas/citología , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Proteínas de Unión a Telómeros/genética
4.
Sci Rep ; 6: 26178, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27185577

RESUMEN

SUMO and ubiquitin play important roles in the response of cells to DNA damage. These pathways are linked by the SUMO Targeted ubiquitin Ligase Rnf4 that catalyses transfer of ubiquitin from a ubiquitin loaded E2 conjugating enzyme to a polySUMO modified substrate. Rnf4 can functionally interact with multiple E2s, including Ube2w, in vitro. Chicken cells lacking Rnf4 are hypersensitive to hyroxyurea, DNA alkylating drugs and DNA crosslinking agents, but this sensitivity is suppressed by simultaneous depletion of Ube2w. Cells depleted of Ube2w alone are not hypersensitive to the same DNA damaging agents. Similar results were also obtained in human cells. These data indicate that Ube2w does not have an essential role in the DNA damage response, but is deleterious in the absence of Rnf4. Thus, although Rnf4 and Ube2w functionally interact in vitro, our genetic experiments indicate that in response to DNA damage Ube2w and Rnf4 function in distinct pathways.


Asunto(s)
Daño del ADN , Proteínas Nucleares/deficiencia , Factores de Transcripción/deficiencia , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Células Cultivadas , Pollos , Humanos
5.
Dev Cell ; 26(4): 381-92, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23932902

RESUMEN

PHD1 belongs to the family of prolyl-4-hydroxylases (PHDs) that is responsible for posttranslational modification of prolines on specific target proteins. Because PHD activity is sensitive to oxygen levels and certain byproducts of the tricarboxylic acid cycle, PHDs act as sensors of the cell's metabolic state. Here, we identify PHD1 as a critical molecular link between oxygen sensing and cell-cycle control. We show that PHD1 function is required for centrosome duplication and maturation through modification of the critical centrosome component Cep192. Importantly, PHD1 is also required for primary cilia formation. Cep192 is hydroxylated by PHD1 on proline residue 1717. This hydroxylation is required for binding of the E3 ubiquitin ligase SCF(Skp2), which ubiquitinates Cep192, targeting it for proteasomal degradation. By modulating Cep192 levels, PHD1 thereby affects the processes of centriole duplication and centrosome maturation and contributes to the regulation of cell-cycle progression.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Centrosoma/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Oxígeno/farmacología , Secuencia de Aminoácidos , Centriolos/efectos de los fármacos , Centriolos/metabolismo , Proteínas Cromosómicas no Histona/química , Células HeLa , Humanos , Hidroxilación/efectos de los fármacos , Mitosis/efectos de los fármacos , Modelos Biológicos , Datos de Secuencia Molecular , Prolina/metabolismo , Unión Proteica , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitinación/efectos de los fármacos
6.
Methods Cell Biol ; 107: 321-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22226529

RESUMEN

In response to genotoxic insults, cells activate DNA damage response pathways that either stimulate transient cell cycle arrest and DNA repair or induce apoptosis. The Caenorhabditis elegans germ line is now well established as a model system to study these processes in a genetically tractable, multicellular organism. Upon treatment with genotoxic agents, premeiotic C. elegans germ cells transiently halt cell cycle progression, whereas meiotic prophase germ cells in the late-pachytene stage undergo apoptosis. Further, accumulation of unrepaired meiotic recombination intermediates can also lead to apoptosis of affected pachytene cells. DNA damage-induced cell death requires key components of the evolutionarily conserved apoptotic machinery. Moreover, both cell cycle arrest and pachytene apoptosis responses depend on conserved DNA damage checkpoint proteins. Genetics- and genomics-based approaches that have demonstrated roles for conserved checkpoint proteins have also begun to uncover novel components of these response pathways. In this chapter, we briefly review the C. elegans DNA damage response field, discuss in detail methods currently used to assay DNA damage responses in C. elegans, and describe the development of new experimental tools that will facilitate a more comprehensive understanding of the DNA damage response.


Asunto(s)
Bioensayo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Reparación del ADN , Células Germinativas/metabolismo , Larva/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Biomarcadores/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de la radiación , Proteínas de Caenorhabditis elegans/genética , Daño del ADN , Rayos gamma , Células Germinativas/efectos de los fármacos , Células Germinativas/efectos de la radiación , Hidroxiurea/farmacología , Larva/efectos de los fármacos , Larva/efectos de la radiación , Meiosis/efectos de los fármacos , Meiosis/genética , Meiosis/efectos de la radiación , Mitosis/efectos de los fármacos , Mitosis/genética , Mitosis/efectos de la radiación , Interferencia de ARN , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA