RESUMEN
Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.
Asunto(s)
Nanopartículas , Infecciones Estafilocócicas , Infección de Heridas , Humanos , Biopelículas , Staphylococcus aureus , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Pseudomonas aeruginosa , Nanopartículas/uso terapéutico , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiologíaRESUMEN
Despite several targeted antiviral drugs against SARS-CoV-2 currently being available, the application of type I interferons (IFNs) still deserves attention as an alternative antiviral strategy. This study aimed to assess the therapeutic effectiveness of IFN-α in hospitalized patients with COVID-19-associated pneumonia. The prospective cohort study included 130 adult patients with coronavirus disease (COVID-19). A dose of 80,000 IU of IFN-α2b was administered daily intranasally for 10 days. Adding IFN-α2b to standard therapy reduces the length of the hospital stay by 3 days (p < 0.001). The level of CT-diagnosed lung injuries was reduced from 35% to 15% (p = 0.011) and CT injuries decreased from 50% to 15% (p = 0.017) by discharge. In the group of patients receiving IFN-α2b, the SpO2 index before and after treatment increased from 94 (92-96, Q1-Q3) to 96 (96-98, Q1-Q3) (p < 0.001), while the percentage of patients with normal saturation increased (from 33.9% to 74.6%, p < 0.05), but the level of SpO2 decreased in the low (from 52.5% to 16.9%) and very low (from 13.6% to 8.5%) categories. The addition of IFN-α2b to standard therapy has a positive effect on the course of severe COVID-19.
Asunto(s)
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Estudios Prospectivos , Interferón alfa-2/uso terapéutico , Interferón-alfa/uso terapéutico , Antivirales/uso terapéuticoRESUMEN
Pseudomonas fluorescens SBW25 is a model soil- and plant-associated bacterium capable of forming a variety of air-liquid interface biofilms in experimental microcosms and on plant surfaces. Previous investigations have shown that cellulose is the primary structural matrix component in the robust and well-attached Wrinkly Spreader biofilm, as well as in the fragile Viscous Mass biofilm. Here, we demonstrate that both biofilms include extracellular DNA (eDNA) which can be visualized using confocal laser scanning microscopy (CLSM), quantified by absorbance measurements, and degraded by DNase I treatment. This eDNA plays an important role in cell attachment and biofilm development. However, exogenous high-molecular-weight DNA appears to decrease the strength and attachment levels of mature Wrinkly Spreader biofilms, whereas low-molecular-weight DNA appears to have little effect. Further investigation with CLSM using an amyloid-specific fluorophore suggests that the Wrinkly Spreader biofilm might also include Fap fibers, which might be involved in attachment and contribute to biofilm strength. The robust nature of the Wrinkly Spreader biofilm also allowed us, using MALDI-TOF mass spectrometry, to identify matrix-associated proteins unable to diffuse out of the structure, as well as membrane vesicles which had a different protein profile compared to the matrix-associated proteins. CLSM and DNase I treatment suggest that some vesicles were also associated with eDNA. These findings add to our understanding of the matrix components in this model pseudomonad, and, as found in other biofilms, biofilm-specific products and material from lysed cells contribute to these structures through a range of complex interactions.
Asunto(s)
Amiloide , Pseudomonas fluorescens , Biopelículas , Desoxirribonucleasa I/metabolismo , ADN/metabolismo , ADN Bacteriano/genética , Pseudomonas fluorescens/metabolismoRESUMEN
The choice of effective biocides used for routine hospital practice should consider the role of disinfectants in the maintenance and development of local resistome and how they might affect antibiotic resistance gene transfer within the hospital microbial population. Currently, there is little understanding of how different biocides contribute to eDNA release that may contribute to gene transfer and subsequent environmental retention. Here, we investigated how different biocides affect the release of eDNA from mature biofilms of two opportunistic model strains Pseudomonas aeruginosa ATCC 27853 (PA) and Staphylococcus aureus ATCC 25923 (SA) and contribute to the hospital resistome in the form of surface and water contaminants and dust particles. The effect of four groups of biocides, alcohols, hydrogen peroxide, quaternary ammonium compounds, and the polymeric biocide polyhexamethylene guanidine hydrochloride (PHMG-Cl), was evaluated using PA and SA biofilms. Most biocides, except for PHMG-Cl and 70% ethanol, caused substantial eDNA release, and PHMG-Cl was found to block biofilm development when used at concentrations of 0.5% and 0.1%. This might be associated with the formation of DNA-PHMG-Cl complexes as PHMG-Cl is predicted to bind to AT base pairs by molecular docking assays. PHMG-Cl was found to bind high-molecular DNA and plasmid DNA and continued to inactivate DNA on surfaces even after 4 weeks. PHMG-Cl also effectively inactivated biofilm-associated antibiotic resistance gene eDNA released by a pan-drug-resistant Klebsiella strain, which demonstrates the potential of a polymeric biocide as a new surface-active agent to combat the spread of antibiotic resistance in hospital settings.
Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , ADN Bacteriano/efectos de los fármacos , Desinfectantes/farmacología , Guanidinas/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , ADN Bacteriano/química , Desinfectantes/química , Guanidinas/síntesis química , Guanidinas/química , Conformación de Ácido Nucleico/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Relación Estructura-ActividadRESUMEN
Staphylococcus aureus (S. aureus) is a causative agent of many hospital- and community-acquired infections with the tendency to develop resistance to all known antibiotics. Therefore, the development of novel antistaphylococcal agents is of urgent need. Sortase A is considered a promising molecular target for the development of antistaphylococcal agents. The main aim of this study was to identify novel sortase A inhibitors. In order to find novel antistaphylococcal agents, we performed phenotypic screening of a library containing 15512 compounds against S. aureus ATCC43300. The molecular docking of hits was performed using the DOCK program and 10 compounds were selected for in vitro enzymatic activity inhibition assay. Two inhibitors were identified, N,N-diethyl-N'-(5-nitro-2-(quinazolin-2-yl)phenyl)propane-1,3-diamine (1) and acridin-9-yl-(1H-benzoimidazol-5-yl)-amine (2), which decrease sortase A activity with IC50 values of 160.3 µM and 207.01 µM, respectively. It was found that compounds 1 and 2 possess antibacterial activity toward 29 tested multidrug resistant S. aureus strains with MIC values ranging from 78.12 to 312.5 mg/L. These compounds can be used for further structural optimization and biological research.
Asunto(s)
Aminoaciltransferasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Aminoaciltransferasas/genética , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Cisteína Endopeptidasas/genética , Inhibidores Enzimáticos/química , Humanos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidadRESUMEN
The choice of efficient antimicrobial additives for polyamide resins is very difficult because of their high processing temperatures of up to 300 °C. In this study, a new, thermally stable polymeric biocide, polyhexamethylene guanidine 2-naphtalenesulfonate (PHMG-NS), was synthesised. According to thermogravimetric analysis, PHMG-NS has a thermal degradation point of 357 °C, confirming its potential use in joint melt processing with polyamide resins. Polyamide 11 (PA-11) films containing 5, 7 and 10 wt% of PHMG-NS were prepared by compression molding and subsequently characterised by FTIR spectroscopy. The surface properties were evaluated both by contact angle, and contactless induction. The incorporation of 10 wt% of PHMG-NS into PA-11 films was found to increase the positive surface charge density by almost two orders of magnitude. PA-11/PHMG-NS composites were found to have a thermal decomposition point at about 400 °C. Mechanical testing showed no change of the tensile strength of polyamide films containing PHMG-NS up to 7 wt%. Antibiofilm activity against the opportunistic bacteria Staphylococcus aureus and Escherichia coli was demonstrated for films containing 7 or 10 wt% of PHMG-NS, through a local biocide effect possibly based on an influence on the bacterial eDNA. The biocide hardly leached from the PA-11 matrix into water, at a rate of less than 1% from its total content for 21 days.
Asunto(s)
Biopelículas/efectos de los fármacos , Desinfectantes/farmacología , Guanidinas/farmacología , Nylons/farmacología , Temperatura , Biomasa , ADN Bacteriano/metabolismo , Escherichia coli K12/efectos de los fármacos , Fenómenos Mecánicos , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , TermogravimetríaRESUMEN
Deschampsia antarctica and Colobantus quitensis are the only two vascular plants colonized on the Antarctic continent, which is usually exposed to extreme environments. Endophytic bacteria residing within plant tissues can exhibit diverse adaptations that contribute to their ecological success and potential benefits for their plant hosts. This study aimed to characterize 12 endophytic bacterial strains isolated from these plants, focusing on their ecological adaptations and functional roles like plant growth promotion, antifungal activities, tolerance to salt and low-carbon environments, wide temperature range, and biofilm formation. Using 16S rRNA sequencing, we identified several strains, including novel species like Hafnia and Agreia. Many strains exhibited nitrogen-fixing ability, phosphate solubilization, ammonia, and IAA production, potentially benefiting their hosts. Additionally, halotolerance and carbon oligotrophy were also shown by studied bacteria. While some Antarctic bacteria remain strictly psychrophilic, others demonstrate a remarkable ability to tolerate a wider range of temperatures, suggesting that they have acquired mechanisms to cope with fluctuations in environmental temperature and developed adaptations to survive in intermediate hosts like mammals and/or birds. Such adaptations and high plasticity of metabolism of Antarctic endophytic bacteria provide a foundation for research and development of new promising products or mechanisms for use in agriculture and technology.
RESUMEN
Introduction: Periodontal diseases are known to be associated with polymicrobial biofilms and inflammasome activation. A deeper understanding of the subgingival cytological (micro) landscape, the role of extracellular DNA (eDNA) during periodontitis, and contribution of the host immune eDNA to inflammasome persistence, may improve our understanding of the mechanisms underlaying severe forms of periodontitis. Methods: In this work, subgingival biolfilms developing on biologically neutral polyethylene terephthalate films placed in gingival cavities of patients with chronic periodontitis were investigated by confocal laser scanning microscopy (CLSM). This allowed examination of realistic cytological landscapes and visualization of extracellular polymeric substances (EPS) including amyloids, total proteins, carbohydrates and eDNA, as well as comparison with several single-strain in vitro model biofilms produced by oral pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus gordonii, S. sanguinis and S. mitis. Fluorescence in situ hybridization (FISH) analysis was also used to identify eDNA derived from eubacteria, streptococci and members of the Bacteroides-Porphyromonas-Prevotella (BPP) group associated with periodontitis. Results: Analysis of subgingival biofilm EPS revealed low levels of amyloids and high levels of eDNA which appears to be the main matrix component. However, bacterial eDNA contributed less than a third of the total eDNA observed, suggesting that host-derived eDNA released in neutrophil extracellular traps may be of more importance in the development of biofilms causing periodontitis. Discussion: eDNA derived from host immunocompetent cells activated at the onset of periodontitis may therefore be a major driver of bacterial persistence and pathogenesis.
Asunto(s)
Biopelículas , Periodontitis , Biopelículas/crecimiento & desarrollo , Humanos , Periodontitis/microbiología , Microscopía Confocal , ADN , Hibridación Fluorescente in Situ , Bacterias/genética , ADN Bacteriano/genética , Inflamasomas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Encía/microbiología , Periodontitis Crónica/microbiología , Periodontitis Crónica/inmunologíaRESUMEN
Severe burns are a major component of conflict-related injuries and can result in high rates of mortality. Conflict and disaster-related severe burn injuries present unique challenges in logistic, diagnostic and treatment options, while wider conflict is associated with driving local antimicrobial resistance. We present a targeted review of available literature over the last 10 years on the use of systemic antimicrobial antibiotics in this setting and, given limited available data, provide an expert consensus discussion. While international guidelines do not tend to recommend routine use of prophylactic systemic antibiotics, the challenges of conflict settings and potential for polytrauma are likely to have ongoing impacts on antimicrobial decision-making and use. Efforts must be made to develop a suitable evidence base in this unique setting. In the interim, a pragmatic approach to balancing selective pressures of antimicrobial use with realistic access is possible.
Asunto(s)
Antibacterianos , Quemaduras , Humanos , Quemaduras/tratamiento farmacológico , Antibacterianos/uso terapéutico , Toma de Decisiones Clínicas , DesastresRESUMEN
Staphylococcus aureus is one of the most common nosocomial biofilm-forming pathogens worldwide that has developed resistance mechanisms against majority of the antibiotics. Therefore, the search of novel antistaphylococcal agents with unexploited mechanisms of action, especially with antibiofilm activity, is of great interest. Seryl-tRNA synthetase is recognized as a promising drug target for the development of antibacterials. We have carried out molecular docking of compounds with antistaphycoccal activity, which were earlier found by us using phenotypic screening, into synthetic site of S. aureus SerRS and found seven hit compounds with low inhibitory activity. Further, we have performed search of S. aureus SerRS inhibitors among compounds which were previously tested by us for inhibitory activity toward S. aureus ThrRS, that belong to the same class of aminoacyl-tRNA synthetases. Among them six hits were identified. We have selected four compounds for antibacterial study and found that the most active compound 1-methyl-3-(1H-imidazol-1-methyl-2-yl)-5-nitro-1H-indazole has MIC values toward S. aureus multidrug-resistant clinical isolates ranging from 78.12 to 156.2 µg/ml. However, this compound precipitated during anti-biofilm study. Therefore, we used 3-[N'-(2-hydroxy-3-methoxybenzylidene)hydrazino]-6-methyl-4H-[1,2,4]triazin-5-one with better solubility (ClogS value = 2.9) among investigated compounds toward SerRS for anti-biofilm study. It was found that this compound has a significant inhibitory effect on the growth of planktonic and biofilm culture of S. aureus 25923 with MIC value of 32 µg ml-1. At the same time, this compound does not reveal antibacterial activity toward Esherichia coli ATCC 47076. Therefore, this compound can be proposed as effective antiseptic toward multidrug-resistant biofilm-forming S. aureus isolates.
Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacosRESUMEN
The ability to colonise the surface of liquids has obvious advantages for bacteria and biofilm formation at the meniscus and air-liquid (A-L) interface is common amongst environmental pseudomonads. Bacteria from this genus also colonise raw meat and in this work the ability of these to produce biofilms was assessed. Sixty isolates were recovered from vacuum-packed venison, phenotypically characterised and shown by hierarchical cluster analysis to represent a diverse collection of psychrotrophic spoilt venison-associated pseudomonads. Of these, 12 % were found to produce biofilms limited to the meniscus region of the microcosm walls, 31 % produced attached biofilms with significant extensions across the A-L interface and 45 % produced unattached 'floating' biofilms. A combined statistical analysis of growth, biofilm strength and attachment levels revealed that growth affected strength but not attachment, and that there was a significant relationship between attachment and strength. Some environmental pseudomonads are known to utilise cellulose as a biofilm matrix component and here 28 % of the SVP isolates were found to express cellulose by epifluorescent microscopy. This survey suggests that biofilm formation may be more common in psychrotrophic meat-associated isolates than amongst the wider pseudomonad community from which spoilage bacteria might be recruited. This may reflect a selective advantage of bacterial aggregations such as biofilms in environments subject to high levels of physical disturbance. Aggregations may be more resistant to competition and dehydration stress than individual bacteria, whilst fragments of these aggregations may prove more effective in the colonisation of new habitats.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Carne/microbiología , Pseudomonas/aislamiento & purificación , Pseudomonas/fisiología , Aire , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , Frío , Pseudomonas/clasificación , AguaRESUMEN
Introduction: IFN-α intervention may block SARS-CoV-2 replication and normalize the deregulated innate immunity of COVID-19. Aim: This meta-analysis aimed to investigate the efficacy of interferon IFN-α-containing regimens when treating patients with moderate-to-severe COVID-19. Material and methods: PubMed, SCOPUS, and ClinicalTrials.gov were searched from inception to 15 January 2022. A systematic literature search was conducted by applying relevant terms for 'COVID-19' and 'interferon-α'. The primary outcome enclosed the all-cause hospital mortality. The secondary outcomes constituted the length of hospital stay; hospital discharge; nucleic acid negative conversion. Results: Eleven studies are enclosed in the meta-analysis. No significant difference in the all-cause mortality rate was found between the study and control groups (OR 0.2; 95% CI 0.05-1.2; I2 = 96%). The implementation of interferon did not influence such outcomes as the length of hospital stay (OR 0.9; 95% CÐ, 0.3-2.6; I2 = 91%), nucleic acid negative conversion (OR 0.8; 95% CI, 0.04-17.2; I2 = 94%). Nevertheless, IFN-α treatment resulted in a higher number of patients discharged from the hospital (OR 26.6; 95% CÐ, 2.7-254.3; I2 = 95%). Conclusions: Thus, IFN-α does not benefit the survival of hospitalized COVID-19 patients but may increase the number of patients discharged from the hospital. Systematic review registration: www.crd.york.ac.uk/prospero, identifier (CRD42022374589).
Asunto(s)
Antivirales , COVID-19 , Interferón-alfa , Humanos , Antivirales/uso terapéutico , Interferón-alfa/uso terapéutico , SARS-CoV-2RESUMEN
Antimicrobial resistance recognised as a major global health problem and it poses a significant challenge in conflict zones, such as the Russia-Ukraine war. This case study focuses on a 32-year-old soldier who sustained combat-related injuries, including extensive wound infections caused by multidrug-resistant and pan-resistant bacteria and was successfully treated with azithromycin-meropenem combination therapy. The emergence of pan-resistant bacteria, particularly a pandrug-resistant strain of Pseudomonas aeruginosa, highlights the severity of the problem and the limited treatment options available. Additionally, the financial burden posed by reserve antibiotics further complicates the management of these infections. The case study demonstrates the effectiveness of including azithromycin-meropenem combination therapy in the treatment regimen, which resulted in improvements in the patient's condition and the eradication of the resistant strains. The findings underscore the need for effective antimicrobial stewardship, infection control measures, and alternative treatment strategies to combat antimicrobial resistance in conflict zones.
RESUMEN
Biofilm formation, or microfouling, is a basic strategy of bacteria to colonise a surface and may happen on surfaces of any nature whenever bacteria are present. Biofilms are hard to eradicate due to the matrix in which the bacteria reside, consisting of strong, adhesive and adaptive self-produced polymers such as eDNA and functional amyloids. Targeting a biofilm matrix may be a promising strategy to prevent biofilm formation. Here, femtosecond laser irradiation was used to modify the stainless steel surface in order to introduce either conical spike or conical groove textures. The resulting topography consists of hierarchical nano-microstructures which substantially increase roughness. The biofilms of two model bacterial strains, P. aeruginosa PA01 and S. aureus ATCC29423, formed on such nanotextured metal surfaces, were considerably modified due to a substantial reduction in amyloid production and due to changes in eDNA surface adhesion, leading to significant reduction in biofilm biomass. Altering the topography of the metal surface, therefore, radically diminishes biofilm development solely by altering biofilm architecture. At the same time, growth and colonisation of the surface by eukaryotic adipose tissue-derived stem cells were apparently enhanced, leading to possible further advantages in controlling eukaryotic growth while suppressing prokaryotic contamination. The obtained results are important for developing anti-bacterial surfaces for numerous applications.
RESUMEN
A therapeutic combination of azithromycin (AZM) and colistin methanesulfonate (CMS) was shown to be effective against both non-PDR and PDR Klebsiella pneumoniae biofilms in vitro. These anti-biofilm effects, however, may not correlate with effects observed in standard plate assays, nor will they representative of in vivo therapeutic action. After all, biofilm-associated infection processes are also impacted by the presence of wound bed components, such as host cells or wound fluids, which can all affect the antibiotic effectiveness. Therefore, an in vitro wound model of biofilm infection which partially mimics the complex microenvironment of infected wounds was developed to investigate the therapeutic potential of an AZM-CMS combination against XDR K. pneumoniae isolates. The model consists of a 3D collagen sponge-like scaffold seeded with HEK293 cells submerged in a fluid milieu mimicking the wound bed exudate. Media that were tested were all based on different strengths of Dulbecco's modified Eagles/high glucose medium supplemented with fetal bovine serum, and/or Bacto Proteose peptone. Use of this model confirmed AZM to be a highly effective antibiofilm component, when applied alone or in combination with CMS, whereas CMS alone had little antibacterial effectiveness or even stimulated biofilm development. The wound model proposed here proves therefore, to be an effective aid in the study of drug combinations under realistic conditions.
RESUMEN
Collagen and its derivates are typically obtained by extracting them from fresh animal tissues. Lately, however, there has been an increased interest in obtaining collagen from other sources, such as waste material, because of the growing trend to replace synthetic materials with sustainable, natural counterparts in various industries, as well as to ensure a rational waste revalorization. In this paper, collagen was obtained from non-tanned waste of leather production, taken at different stages of the production process: limed pelt, delimed pelt, and fleshings. A stepwise extraction through acid hydrolysis in 0.5 M acetic acid and subsequent precipitation with NaCl lead to collagen-containing protein extracts. The highest collagen yield was achieved in extracts based on delimed pelt (2.3% m/m after a first extraction round, and an additional 1.4% m/m after the second round). Hyp/Hyl molar ratios of 10.91 in these extracts suggest the presence of type I collagen. Moreover, gels based on these collagen extracts promote adhesion and spreading of HEK293 cells, with cells grown on collagen from delimed pelt showing a larger nuclear and cell expansion than cells grown on traditional bovine tendon atelocollagen. This suggests that these collagen gels are promising natural biomedical carriers and could be used in a wide range of medical and cosmetic applications.
RESUMEN
Novel antibiotic combinations may act synergistically to inhibit the growth of multidrug-resistant bacterial pathogens but predicting which combination will be successful is difficult, and standard antimicrobial susceptibility testing may not identify important physiological differences between planktonic free-swimming and biofilm-protected surface-attached sessile cells. Using a nominally macrolide-resistant model Klebsiella pneumoniae strain (ATCC 10031) we demonstrate the effectiveness of several macrolides in inhibiting biofilm growth in multi-well plates, and the ability of azithromycin (AZM) to improve the effectiveness of the antibacterial last-agent-of-choice for K. pneumoniae infections, colistin methanesulfonate (CMS), against biofilms. This synergistic action was also seen in biofilm tests of several K. pneumoniae hospital isolates and could also be identified in polymyxin B disc-diffusion assays on azithromycin plates. Our work highlights the complexity of antimicrobial-resistance in bacterial pathogens and the need to test antibiotics with biofilm models where potential synergies might provide new therapeutic opportunities not seen in liquid culture or colony-based assays.
Asunto(s)
Infecciones por Klebsiella , Neumonía , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Azitromicina/farmacología , Azitromicina/uso terapéutico , Biopelículas , Colistina/farmacología , Colistina/uso terapéutico , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Mesilatos , Pruebas de Sensibilidad Microbiana , Neumonía/tratamiento farmacológico , Polimixina B/farmacología , Polimixina B/uso terapéuticoRESUMEN
Staphylococcus aureus is one of the most dangerous pathogens commonly associated with high levels of morbidity and mortality. Sortase A is considered as a promising molecular target for the development of antistaphylococcal agents. Using hybrid virtual screening approach and FRET analysis, we have identified five compounds able to decrease the activity of sortase A by more than 50% at the concentration of 200 µM. The most promising compound was 2-(2-amino-3-chloro-benzoylamino)-benzoic acid which was able to inhibit S. aureus sortase A at the IC50 value of 59.7 µM. This compound was selective toward sortase A compared to other four cysteine proteases - cathepsin L, cathepsin B, rhodesain, and the SARS-CoV2 main protease. Microscale thermophoresis experiments confirmed that this compound bound sortase A with KD value of 189 µM. Antibacterial and antibiofilm assays also confirmed high specificity of the hit compound against two standard and three wild-type, S. aureus hospital infection isolates. The effect of the compound on biofilms produced by two S. aureus ATCC strains was also observed suggesting that the compound reduced biofilm formation by changing the biofilm structure and thickness.
Asunto(s)
COVID-19 , Infecciones Estafilocócicas , Aminoaciltransferasas , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Biopelículas , Cisteína Endopeptidasas , Humanos , Pruebas de Sensibilidad Microbiana , ARN Viral/farmacología , SARS-CoV-2 , Staphylococcus aureusRESUMEN
The establishment of O2 gradients in liquid columns by bacterial metabolic activity produces a spatially-structured environment. This produces a high-O2 region at the top that represents an un-occupied niche which could be colonised by biofilm-competent strains. We have used this to develop an experimental model system using soil-wash inocula and a serial-transfer approach to investigate changes in community-based biofilm-formation and productivity. This involved 10 transfers of mixed-community or biofilm-only samples over a total of 10-60 days incubation. In all final-transfer communities the ability to form biofilms was retained, though in longer incubations the build-up of toxic metabolites limited productivity. Measurements of microcosm productivity, biofilm-strength and attachment levels were used to assess community-aggregated traits which showed changes at both the community and individual-strain levels. Final-transfer communities were stratified with strains demonstrating a plastic phenotype when migrating between the high and low-O2 regions. The majority of community productivity came from the O2-depleted region rather than the top of the liquid column. This model system illustrates the complexity we expect to see in natural biofilm-forming communities. The connection between biofilms and the liquid column seen here has important implications for how these structures form and respond to selective pressure.
Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biopelículas , Microbiología Ambiental , Técnicas Microbiológicas , Bacterias/clasificación , Biodiversidad , Biopelículas/crecimiento & desarrollo , Técnicas Microbiológicas/métodosRESUMEN
Green-emitting water-soluble amino-ketoenole dye AmyGreen is proposed as an efficient fluorescent stain for visualization of bacterial amyloids in biofilms and the detection of pathological amyloids in vitro. This dye is almost non-fluorescent in solution, displays strong green emission in the presence of amyloid fibril of proteins. AmyGreen is also weakly fluorescent in presence to biomolecules that are components of cells, extracellular matrix or medium: nucleic acids, polysaccharides, lipids, and proteins. Thus, the luminescence turn-on behavior of AmyGreen can be utilized for visualization of amyloid components of bacterial biofilm extracellular matrix. Herein we report the application of AmyGreen for fluorescent staining of a number of amyloid-contained bacteria biofilms produced by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bordetella avium, and Staphylococcus aureus. The effectiveness of AmyGreen was compared to traditional amyloid sensitive dye Thioflavine T. The main advantage of AmyGreen (concentration 10-5 M) is a higher sensitivity in the visualization of amyloid biofilm components over Thioflavine T (10-4 M) as it was revealed when staining E. coli and K. pneumoniae bacterial biofilms. Besides, AmyGreen displays lower cross-selectivity to nucleic acids as demonstrated both in in-solution experiments and upon staining of eukaryotic human mesenchymal stem cells used as amyloid-free negative control over amyloid-rich bacterial biofilms. The results point to a lower risk of false-positive response upon determination of amyloid components of bacterial biofilm using AmyGreen. Co-staining of biofilm by AmyGreen and cellulose sensitive dye Calcofluor White show difference in their staining patterns and localization, indicating separation of polysaccharide-rich and amyloid-rich regions of investigated biofilms. Thus, we suggest the new AmyGreen stain for visualization and differentiation of amyloid fibrils in bacterial biofilms to be used solely and in combination with other stains for confocal and fluorescence microscopy analysis.