RESUMEN
Despite huge efforts made in academic and pharmaceutical worldwide research, current anticancer therapies achieve effective treatment in a limited number of neoplasia cases only. Oncology terms such as big killers - to identify tumours with yet a high mortality rate - or undruggable cancer targets, and chemoresistance, represent the current therapeutic debacle of cancer treatments. In addition, metastases, tumour microenvironments, tumour heterogeneity, metabolic adaptations, and immunotherapy resistance are essential features controlling tumour response to therapies, but still, lack effective therapeutics or modulators. In this scenario, where the pharmaceutical productivity and drug efficacy in oncology seem to have reached a plateau, the so-called drug repurposing - i.e. the use of old drugs, already in clinical use, for a different therapeutic indication - is an appealing strategy to improve cancer therapy. Opportunities for drug repurposing are often based on occasional observations or on time-consuming pre-clinical drug screenings that are often not hypothesis-driven. In contrast, in-silico drug repurposing is an emerging, hypothesis-driven approach that takes advantage of the use of big-data. Indeed, the extensive use of -omics technologies, improved data storage, data meaning, machine learning algorithms, and computational modeling all offer unprecedented knowledge of the biological mechanisms of cancers and drugs' modes of action, providing extensive availability for both disease-related data and drugs-related data. This offers the opportunity to generate, with time and cost-effective approaches, computational drug networks to predict, in-silico, the efficacy of approved drugs against relevant cancer targets, as well as to select better responder patients or disease' biomarkers. Here, we will review selected disease-related data together with computational tools to be exploited for the in-silico repurposing of drugs against validated targets in cancer therapies, focusing on the oncogenic signaling pathways activation in cancer. We will discuss how in-silico drug repurposing has the promise to shortly improve our arsenal of anticancer drugs and, likely, overcome certain limitations of modern cancer therapies against old and new therapeutic targets in oncology.
Asunto(s)
Antineoplásicos/uso terapéutico , Diseño de Fármacos/métodos , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Animales , HumanosRESUMEN
Oncogenic v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-RAS) plays a key role in the development and maintenance of pancreatic ductal adenocarcinoma (PDAC). The targeting of K-RAS would be beneficial to treat tumors whose growth depends on active K-RAS. The analysis of K-RAS genomic mutations is a clinical routine; however, an emerging question is whether the mutational status is able to identify tumors effectively dependent on K-RAS for tailoring targeted therapies. With the emergence of novel K-RAS inhibitors in clinical settings, this question is relevant. Several studies support the notion that the K-RAS mutation is not a sufficient biomarker deciphering the effective dependency of the tumor. Transcriptomic and metabolomic profiles of tumors, while revealing K-RAS signaling complexity and K-RAS-driven molecular pathways crucial for PDAC growth, are opening the opportunity to specifically identify K-RAS-dependent- or K-RAS-independent tumor subtypes by using novel molecular biomarkers. This would help tumor selection aimed at tailoring therapies against K-RAS. In this review, we will present studies about how the K-RAS mutation can also be interpreted in a state of K-RAS dependency, for which it is possible to identify specific K-RAS-driven molecular biomarkers in certain PDAC subtypes, beyond the genomic K-RAS mutational status.
Asunto(s)
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patología , Humanos , Mutación , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patología , TranscriptomaRESUMEN
Pancreatic cancer (PC) is a clinically challenging tumor to combat due to its advanced stage at diagnosis as well as its resistance to currently available therapies. The absence of early symptoms and known detectable biomarkers renders this disease incredibly difficult to detect/manage. Recent advances in the understanding of PC biology have highlighted the importance of cancer-immune cell interactions, not only in the tumor micro-environment but also in distant systemic sites, like the bone marrow, spleen and circulating immune cells, the so-called macro-environment. The response of the macro-environment is emerging as a determining factor in tumor development by contributing to the formation of an increasingly immunogenic micro-environment promoting tumor homeostasis and progression. We will summarize the key events associated with the feedback loop between the tumor immune micro-environment (TIME) and the tumor immune macroenvironment (TIMaE) in pancreatic precancerous lesions along with how it regulates disease development and progression. In addition, liquid biopsy biomarkers capable of diagnosing PC at an early stage of onset will also be discussed. A clearer understanding of the early crosstalk between micro-environment and macro-environment could contribute to identifying new molecular therapeutic targets and biomarkers, consequently improving early PC diagnosis and treatment.
Asunto(s)
Biomarcadores de Tumor , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/metabolismo , Biomarcadores de Tumor/sangre , Lesiones Precancerosas/patología , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/sangre , Progresión de la EnfermedadRESUMEN
Background: Few data are available about the durability of the response, the induction of neutralizing antibodies, and the cellular response upon the third dose of the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in hemato-oncological patients. Objective: To investigate the antibody and cellular response to the BNT162b2 vaccine in patients with hematological malignancy. Methods: We measured SARS-CoV-2 anti-spike antibodies, anti-Omicron neutralizing antibodies, and T-cell responses 1 month after the third dose of vaccine in 93 fragile patients with hematological malignancy (FHM), 51 fragile not oncological subjects (FNO) aged 80-92, and 47 employees of the hospital (healthcare workers, (HW), aged 23-66 years. Blood samples were collected at day 0 (T0), 21 (T1), 35 (T2), 84 (T3), 168 (T4), 351 (T pre-3D), and 381 (T post-3D) after the first dose of vaccine. Serum IgG antibodies against S1/S2 antigens of SARS-CoV-2 spike protein were measured at every time point. Neutralizing antibodies were measured at T2, T3 (anti-Alpha), T4 (anti-Delta), and T post-3D (anti-Omicron). T cell response was assessed at T post-3D. Results: An increase in anti-S1/S2 antigen antibodies compared to T0 was observed in the three groups at T post-3D. After the third vaccine dose, the median antibody level of FHM subjects was higher than after the second dose and above the putative protection threshold, although lower than in the other groups. The neutralizing activity of antibodies against the Omicron variant of the virus was tested at T2 and T post-3D. 42.3% of FHM, 80,0% of FNO, and 90,0% of HW had anti-Omicron neutralizing antibodies at T post-3D. To get more insight into the breadth of antibody responses, we analyzed neutralizing capacity against BA.4/BA.5, BF.7, BQ.1, XBB.1.5 since also for the Omicron variants, different mutations have been reported especially for the spike protein. The memory T-cell response was lower in FHM than in FNO and HW cohorts. Data on breakthrough infections and deaths suggested that the positivity threshold of the test is protective after the third dose of the vaccine in all cohorts. Conclusion: FHM have a relevant response to the BNT162b2 vaccine, with increasing antibody levels after the third dose coupled with, although low, a T-cell response. FHM need repeated vaccine doses to attain a protective immunological response.
Asunto(s)
COVID-19 , Neoplasias Hematológicas , Glicoproteína de la Espiga del Coronavirus , Humanos , Vacunas contra la COVID-19 , Vacuna BNT162 , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos AntiviralesRESUMEN
The SARS-CoV-2 Variants of Concern tracking via Whole Genome Sequencing represents a pillar of public health measures for the containment of the pandemic. The ability to track down the lineage distribution on a local and global scale leads to a better understanding of immune escape and to adopting interventions to contain novel outbreaks. This scenario poses a challenge for NGS laboratories worldwide that are pressed to have both a faster turnaround time and a high-throughput processing of swabs for sequencing and analysis. In this study, we present an optimization of the Illumina COVID-seq protocol carried out on thousands of SARS-CoV-2 samples at the wet and dry level. We discuss the unique challenges related to processing hundreds of swabs per week such as the tradeoff between ultra-high sensitivity and negative contamination levels, cost efficiency and bioinformatics quality metrics.
RESUMEN
Clinical outcomes of COVID-19 patients are worsened by the presence of co-morbidities, especially cancer leading to elevated mortality rates. SARS-CoV-2 infection is known to alter immune system homeostasis. Whether cancer patients developing COVID-19 present alterations of immune functions which might contribute to worse outcomes have so far been poorly investigated. We conducted a multi-omic analysis of immunological parameters in peripheral blood mononuclear cells (PBMCs) of COVID-19 patients with and without cancer. Healthy donors and SARS-CoV-2-negative cancer patients were also included as controls. At the infection peak, cytokine multiplex analysis of blood samples, cytometry by time of flight (CyTOF) cell population analyses, and Nanostring gene expression using Pancancer array on PBMCs were performed. We found that eight pro-inflammatory factors (IL-6, IL-8, IL-13, IL-1ra, MIP-1a, IP-10) out of 27 analyzed serum cytokines were modulated in COVID-19 patients irrespective of cancer status. Diverse subpopulations of T lymphocytes such as CD8+T, CD4+T central memory, Mucosal-associated invariant T (MAIT), natural killer (NK), and γδ T cells were reduced, while B plasmablasts were expanded in COVID-19 cancer patients. Our findings illustrate a repertoire of aberrant alterations of gene expression in circulating immune cells of COVID-19 cancer patients. A 19-gene expression signature of PBMCs is able to discriminate COVID-19 patients with and without solid cancers. Gene set enrichment analysis highlights an increased gene expression linked to Interferon α, γ, α/ß response and signaling which paired with aberrant cell cycle regulation in cancer patients. Ten out of the 19 genes, validated in a real-world consecutive cohort, were specific of COVID-19 cancer patients independently from different cancer types and stages of the diseases, and useful to stratify patients in a COVID-19 disease severity-manner. We also unveil a transcriptional network involving gene regulators of both inflammation response and proliferation in PBMCs of COVID-19 cancer patients.
Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Citocinas/sangre , Leucocitos Mononucleares/inmunología , Neoplasias/inmunología , COVID-19/patología , Estudios de Casos y Controles , Femenino , Humanos , Leucocitos Mononucleares/citología , Masculino , Neoplasias/patologíaRESUMEN
Cancer stem-like cells (CSC) induce aggressive tumor phenotypes such as metastasis formation, which is associated with poor prognosis in triple-negative breast cancer (TNBC). Repurposing of FDA-approved drugs that can eradicate the CSC subcompartment in primary tumors may prevent metastatic disease, thus representing an effective strategy to improve the prognosis of TNBC. Here, we investigated spheroid-forming cells in a metastatic TNBC model. This strategy enabled us to specifically study a population of long-lived tumor cells enriched in CSCs, which show stem-like characteristics and induce metastases. To repurpose FDA-approved drugs potentially toxic for CSCs, we focused on pyrvinium pamoate (PP), an anthelmintic drug with documented anticancer activity in preclinical models. PP induced cytotoxic effects in CSCs and prevented metastasis formation. Mechanistically, the cell killing effects of PP were a result of inhibition of lipid anabolism and, more specifically, the impairment of anabolic flux from glucose to cholesterol and fatty acids. CSCs were strongly dependent upon activation of lipid biosynthetic pathways; activation of these pathways exhibited an unfavorable prognostic value in a cohort of breast cancer patients, where it predicted high probability of metastatic dissemination and tumor relapse. Overall, this work describes a new approach to target aggressive CSCs that may substantially improve clinical outcomes for patients with TNBC, who currently lack effective targeted therapeutic options. SIGNIFICANCE: These findings provide preclinical evidence that a drug repurposing approach to prevent metastatic disease in TNBC exploits lipid anabolism as a metabolic vulnerability against CSCs in primary tumors.
Asunto(s)
Antineoplásicos/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Compuestos de Pirvinio/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Colesterol/metabolismo , Reposicionamiento de Medicamentos , Femenino , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Endogámicos NOD , Células Madre Neoplásicas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The possible existence of yet undiscovered human tumorigenic viruses is still under scrutiny. The development of large-scale sequencing technologies, coupled with bioinformatics techniques for the characterization of metagenomic sequences, have provided an invaluable tool for the detection of unknown, infectious, tumorigenic agents, as demonstrated by several recent studies. However, discoveries of novel viruses possibly associated with tumorigenesis are scarce at best. Here, we apply a rigorous bioinformatics workflow to investigate in depth tumor metagenomes from a small but carefully selected cohort of immunosuppressed patients. While a variegated bacterial microbiome was associated with each tumor, no evidence of the presence of putative oncoviruses was found. These results are consistent with the major findings of several recent papers and suggest that new human tumorigenic viruses are not common even in immunosuppressed populations.
Asunto(s)
Huésped Inmunocomprometido , Metagenómica/métodos , Neoplasias/virología , Virus Oncogénicos/genética , Biología Computacional/métodos , Humanos , Terapia de Inmunosupresión/efectos adversos , Metagenoma , Microbiota , Probabilidad , Análisis de Secuencia de ARN , Virus/genéticaRESUMEN
Mutated KRAS protein is a pivotal tumor driver in pancreatic cancer. However, despite comprehensive efforts, effective therapeutics that can target oncogenic KRAS are still under investigation or awaiting clinical approval. Using a specific KRAS-dependent gene signature, we implemented a computer-assisted inspection of a drug-gene network to in silico repurpose drugs that work like inhibitors of oncogenic KRAS. We identified and validated decitabine, an FDA-approved drug, as a potent inhibitor of growth in pancreatic cancer cells and patient-derived xenograft models that showed KRAS dependency. Mechanistically, decitabine efficacy was linked to KRAS-driven dependency on nucleotide metabolism and its ability to specifically impair pyrimidine biosynthesis in KRAS-dependent tumors cells. These findings also showed that gene signatures related to KRAS dependency might be prospectively used to inform on decitabine sensitivity in a selected subset of patients with KRAS-mutated pancreatic cancer. Overall, the repurposing of decitabine emerged as an intriguing option for treating pancreatic tumors that are addicted to mutant KRAS, thus offering opportunities for improving the arsenal of therapeutics for this extremely deadly disease. SIGNIFICANCE: Decitabine is a promising drug for cancer cells dependent on RAS signaling.
Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Decitabina/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma/metabolismo , Animales , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Reposicionamiento de Medicamentos/métodos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación/efectos de los fármacos , Neoplasias Pancreáticas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacosRESUMEN
Human AKTIP and mouse Ft1 are orthologous ubiquitin E2 variant proteins involved in telomere maintenance and DNA replication. AKTIP also interacts with A- and B-type lamins. These features suggest that Ft1 may be implicated in aging regulatory pathways. Here, we show that cells derived from hypomorph Ft1 mutant (Ft1kof/kof ) mice exhibit telomeric defects and that Ft1kof/kof animals develop progeroid traits, including impaired growth, skeletal and skin defects, abnormal heart tissue, and sterility. We also demonstrate a genetic interaction between Ft1 and p53. The analysis of mice carrying mutations in both Ft1 and p53 (Ft1kof/kof ; p53ko/ko and Ft1kof/kof ; p53+/ko ) showed that reduction in p53 rescues the progeroid traits of Ft1 mutants, suggesting that they are at least in part caused by a p53-dependent DNA damage response. Conversely, Ft1 reduction alters lymphomagenesis in p53 mutant mice. These results identify Ft1 as a new player in the aging process and open the way to the analysis of its interactions with other progeria genes using the mouse model.
Asunto(s)
Progeria/genética , Proteínas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Proteínas Reguladoras de la Apoptosis , Células Cultivadas , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Mutación , Progeria/metabolismo , Progeria/patología , Proteínas/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Brain gene transfer using viral vectors will likely become a therapeutic option for several disorders. Helper-dependent (HD) canine adenovirus type 2 vectors (CAV-2) are well suited for this goal. These vectors are poorly immunogenic, efficiently transduce neurons, are retrogradely transported to afferent structures in the brain and lead to long-term transgene expression. CAV-2 vectors are being exploited to unravel behavior, cognition, neural networks, axonal transport and therapy for orphan diseases. With the goal of better understanding and characterizing HD-CAV-2 for brain therapy, we analyzed the transcriptomic modulation induced by HD-CAV-2 in human differentiated neurospheres derived from midbrain progenitors. This 3D model system mimics several aspects of the dynamic nature of human brain. We found that differentiated neurospheres are readily transduced by HD-CAV-2 and that transduction generates two main transcriptional responses: a DNA damage response and alteration of centromeric and microtubule probes. Future investigations on the biochemistry of processes highlighted by probe modulations will help defining the implication of HD-CAV-2 and CAR receptor binding in enchaining these functional pathways. We suggest here that the modulation of DNA damage genes is related to viral DNA, while the alteration of centromeric and microtubule probes is possibly enchained by the interaction of the HD-CAV-2 fibre with CAR.