Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Fish Physiol Biochem ; 48(4): 1117-1135, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35917042

RESUMEN

In this study, we aimed to investigate the relationship between cortisol and the determination of sexual fate in the commercially important European sea bass (Dicentrarchus labrax). To test our hypothesis, we designed two temperature-based experiments (19 ℃, 21 ℃ and 23 ℃, experiment 1; 16 ℃ and 21 ℃, experiment 2) to assess the effects of these thermal treatments on European sea bass sex determination and differentiation. In the fish from the first experiment, we evaluated whether blood cortisol levels and expression of stress key regulatory genes were different between differentiating (149 to 183 dph) males and females. In the second experiment, we assessed whether cortisol accumulated in scales over time during the labile period for sex determination as well as the neuroanatomical localisation of brain cells expressing brain aromatase (cyp19a1b) and corticotropin-releasing factor (crf) differed between males and females undergoing molecular sex differentiation (117 to 124 dph). None of the gathered results allowed to detect differences between males and females regarding cortisol production and regulatory mechanisms. Altogether, our data provide strong physiological, molecular and histochemical evidence, indicating that in vivo cortisol regulation has no major effects on the sex of European sea bass.


Asunto(s)
Lubina , Animales , Lubina/fisiología , Femenino , Hidrocortisona , Masculino , Diferenciación Sexual/genética
2.
Gen Comp Endocrinol ; 291: 113439, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061640

RESUMEN

Anthropogenic emissions of carbon dioxide in the atmosphere have generated rapid variations in atmospheric composition which drives major climate changes. Climate change related effects include changes in physico-chemical proprieties of sea and freshwater, such as variations in water temperature, salinity, pH/pCO2 and oxygen content, which can impact fish critical physiological functions including reproduction. In this context, the main aim of the present review is to discuss how climate change related effects (variation in water temperature and salinity, increases in duration and frequency of hypoxia events, water acidification) would impact reproduction by affecting the neuroendocrine axis (brain-pituitary-gonad axis). Variations in temperature and photoperiod regimes are known to strongly affect sex differentiation and the timing and phenology of spawning period in several fish species. Temperature mainly acts at the level of gonad by interfering with steroidogenesis, (notably on gonadal aromatase activity) and gametogenesis. Temperature is also directly involved in the quality of released gametes and embryos development. Changes in salinity or water acidification are especially associated with reduction of sperm quality and reproductive output. Hypoxia events are able to interact with gonad steroidogenesis by acting on the steroids precursor cholesterol availability or directly on aromatase action, with an impact on the quality of gametes and reproductive success. Climate change related effects on water parameters likely influence also the reproductive behavior of fish. Although the precise mechanisms underlying the regulation of these effects are not always understood, in this review we discuss different hypothesis and propose future research perspectives.


Asunto(s)
Encéfalo/fisiología , Cambio Climático , Peces/fisiología , Gónadas/fisiología , Hipófisis/fisiología , Reproducción/fisiología , Animales , Gónadas/efectos de los fármacos
3.
BMC Microbiol ; 16(1): 266, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27821062

RESUMEN

BACKGROUND: The better understanding of how intestinal microbiota interacts with fish health is one of the key to sustainable aquaculture development. The present experiment aimed at correlating active microbiota associated to intestinal mucosa with Specific Growth Rate (SGR) and Hypoxia Resistance Time (HRT) in European sea bass individuals submitted to different nutritional histories: the fish were fed either standard or unbalanced diets at first feeding, and then mixed before repeating the dietary challenge in a common garden approach at the juvenile stage. RESULTS: A diet deficient in essential fatty acids (LH) lowered both SGR and HRT in sea bass, especially when the deficiency was already applied at first feeding. A protein-deficient diet with high starch supply (HG) reduced SGR to a lesser extent than LH, but it did not affect HRT. In overall average, 94 % of pyrosequencing reads corresponded to Proteobacteria, and the differences in Operational Taxonomy Units (OTUs) composition were mildly significant between experimental groups, mainly due to high individual variability. The highest and the lowest Bray-Curtis indices of intra-group similarity were observed in the two groups fed standard starter diet, and then mixed before the final dietary challenge with fish already exposed to the nutritional deficiency at first feeding (0.60 and 0.42 with diets HG and LH, respectively). Most noticeably, the median percentage of Escherichia-Shigella OTU_1 was less in the group LH with standard starter diet. Disregarding the nutritional history of each individual, strong correlation appeared between (1) OTU richness and SGR, and (2) dominance index and HRT. The two physiological traits correlated also with the relative abundance of distinct OTUs (positive correlations: Pseudomonas sp. OTU_3 and Herbaspirillum sp. OTU_10 with SGR, Paracoccus sp. OTU_4 and Vibrio sp. OTU_7 with HRT; negative correlation: Rhizobium sp. OTU_9 with HRT). CONCLUSIONS: In sea bass, gut microbiota characteristics and physiological traits of individuals are linked together, interfering with nutritional history, and resulting in high variability among individual microbiota. Many samples and tank replicates seem necessary to further investigate the effect of experimental treatments on gut microbiota composition, and to test the hypothesis whether microbiotypes may be delineated in fish.


Asunto(s)
Alimentación Animal/análisis , Bacterias/aislamiento & purificación , Lubina/microbiología , Microbioma Gastrointestinal , Mucosa Intestinal/microbiología , Oxígeno/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Oxígeno/análisis , Filogenia
4.
Sci Total Environ ; 858(Pt 1): 159804, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349621

RESUMEN

The absorption of anthropogenic carbon dioxide from the atmosphere by oceans generates rapid changes in seawater carbonate system and pH, a process termed ocean acidification. Exposure to acidified water can impact the allostatic load of marine organism as the acclimation to suboptimal environments requires physiological adaptive responses that are energetically costly. As a consequence, fish facing ocean acidification may experience alterations of their stress response and a compromised ability to cope with additional stress, which may impact individuals' life traits and ultimately their fitness. In this context, we carried out an integrative study investigating the impact of ocean acidification on the physiological and behavioral stress responses to an acute stress in juvenile European sea bass. Fish were long term (11 months) exposed to present day pH/CO2 condition or acidified water as predicted by IPCC "business as usual" (RCP8.5) scenario for 2100 and subjected to netting stress (fish transfer and confinement test). Fish acclimated to acidified condition showed slower post stress return to plasma basal concentrations of cortisol and glucose. We found no clear indication of regulation in the central and interrenal tissues of the expression levels of gluco- and mineralocorticoid receptors and corticoid releasing factor. At 120 min post stress, sea bass acclimated to acidified water had divergent neurotransmitters concentrations pattern in the hypothalamus (higher serotonin levels and lower GABA and dopamine levels) and a reduction in motor activity. Our experimental data indicate that ocean acidification alters the physiological response to acute stress in European sea bass via the neuroendocrine regulation of the corticotropic axis, a response associated to an alteration of the motor behavioral profile. Overall, this study suggests that behavioral and physiological adaptive response to climate changes related constraints may impact fish resilience to further stressful events.


Asunto(s)
Lubina , Agua de Mar , Animales , Agua de Mar/química , Concentración de Iones de Hidrógeno , Océanos y Mares , Cambio Climático , Lubina/fisiología , Dióxido de Carbono/toxicidad , Agua
5.
J Agric Food Chem ; 56(10): 3460-9, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18452298

RESUMEN

Traceability in the fish food sector plays an increasingly important role for consumer protection and confidence building. This is reflected by the introduction of legislation and rules covering traceability on national and international levels. Although traceability through labeling is well established and supported by respective regulations, monitoring and enforcement of these rules are still hampered by the lack of efficient diagnostic tools. We describe protocols using a direct sequencing method based on 212-274-bp diagnostic sequences derived from species-specific mitochondria DNA cytochrome b, 16S rRNA, and cytochrome oxidase subunit I sequences which can efficiently be applied to unambiguously determine even closely related fish species in processed food products labeled "anchovy". Traceability of anchovy-labeled products is supported by the public online database AnchovyID ( http://anchovyid.jrc.ec.europa.eu), which provided data obtained during our study and tools for analytical purposes.


Asunto(s)
ADN/análisis , Productos Pesqueros/análisis , Peces/clasificación , Peces/genética , Marcadores Genéticos/genética , Animales , Bases de Datos de Ácidos Nucleicos , Conservación de Alimentos , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Alineación de Secuencia
6.
PLoS One ; 10(2): e0117562, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25668035

RESUMEN

In the context of the sixth wave of extinction, reliable surveys of biodiversity are increasingly needed to infer the cause and consequences of species and community declines, identify early warning indicators of tipping points, and provide reliable impact assessments before engaging in activities with potential environmental hazards. DNA metabarcoding has emerged as having potential to provide speedy assessment of community structure from environmental samples. Here we tested the reliability of metabarcoding by comparing morphological and molecular inventories of invertebrate communities associated with seagrasses through estimates of alpha and beta diversity, as well as the identification of the most abundant taxa. Sediment samples were collected from six Zostera marina seagrass meadows across Brittany, France. Metabarcoding surveys were performed using both mitochondrial (Cytochrome Oxidase I) and nuclear (small subunit 18S ribosomal RNA) markers, and compared to morphological inventories compiled by a long-term benthic monitoring network. A sampling strategy was defined to enhance performance and accuracy of results by preventing the dominance of larger animals, boosting statistical support through replicates, and using two genes to compensate for taxonomic biases. Molecular barcodes proved powerful by revealing a remarkable level of diversity that vastly exceeded the morphological survey, while both surveys identified congruent differentiation of the meadows. However, despite the addition of individual barcodes of common species into taxonomic reference databases, the retrieval of only 36% of these species suggest that the remaining were either not present in the molecular samples or not detected by the molecular screening. This finding exemplifies the necessity of comprehensive and well-curated taxonomic reference libraries and multi-gene surveys. Overall, results offer methodological guidelines and support for metabarcoding as a powerful and repeatable method of characterizing communities, while also presenting suggestions for improvement, including implementation of pilot studies prior to performing full "blind" metabarcoding assessments to optimize sampling and amplification protocols.


Asunto(s)
Zosteraceae/clasificación , Zosteraceae/genética , Animales , Biodiversidad , Biomarcadores , Núcleo Celular/genética , ADN/genética , Código de Barras del ADN Taxonómico/métodos , Francia , Sedimentos Geológicos/análisis , Mitocondrias/genética , Datos de Secuencia Molecular , ARN Ribosómico 18S/genética , Reproducibilidad de los Resultados
7.
Nat Commun ; 3: 851, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22617291

RESUMEN

Illegal, Unreported and Unregulated fishing has had a major role in the overexploitation of global fish populations. In response, international regulations have been imposed and many fisheries have been 'eco-certified' by consumer organizations, but methods for independent control of catch certificates and eco-labels are urgently needed. Here we show that, by using gene-associated single nucleotide polymorphisms, individual marine fish can be assigned back to population of origin with unprecedented high levels of precision. By applying high differentiation single nucleotide polymorphism assays, in four commercial marine fish, on a pan-European scale, we find 93-100% of individuals could be correctly assigned to origin in policy-driven case studies. We show how case-targeted single nucleotide polymorphism assays can be created and forensically validated, using a centrally maintained and publicly available database. Our results demonstrate how application of gene-associated markers will likely revolutionize origin assignment and become highly valuable tools for fighting illegal fishing and mislabelling worldwide.


Asunto(s)
Polimorfismo de Nucleótido Simple/genética , Animales , Conservación de los Recursos Naturales , Ecología , Explotaciones Pesqueras , Peces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA