Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Proteome Res ; 9(6): 3118-25, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20405930

RESUMEN

Protein-protein control recognition remains a huge challenge, and its development depends on understanding the chemical and biological mechanisms by which these interactions occur. Here we describe a protein-protein control recognition technique based on the dominant electrostatic interactions occurring between the proteins. We designed a potassium channel inhibitor, BmP05-T, that was 90.32% identical to wild-type BmP05. Negatively charged residues were translocated from the nonbinding interface to the binding interface of BmP05 inhibitor, such that BmP05-T now used BmP05 nonbinding interface as the binding interface. This switch demonstrated that nonbinding interfaces were able to control the orientation of protein binding interfaces in the process of protein-protein recognition. The novel function findings of BmP05-T peptide suggested that the control recognition technique described here had the potential for use in designing and utilizing functional proteins in many biological scenarios.


Asunto(s)
Modelos Biológicos , Péptidos/química , Ingeniería de Proteínas/métodos , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Unión Proteica , Conformación Proteica , Venenos de Escorpión/química , Venenos de Escorpión/metabolismo , Alineación de Secuencia , Electricidad Estática , Termodinámica
2.
Biochem J ; 385(Pt 1): 95-104, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15588251

RESUMEN

OSK1 (alpha-KTx3.7) is a 38-residue toxin cross-linked by three disulphide bridges that was initially isolated from the venom of the Asian scorpion Orthochirus scrobiculosus. OSK1 and several structural analogues were produced by solid-phase chemical synthesis, and were tested for lethality in mice and for their efficacy in blocking a series of 14 voltage-gated and Ca2+-activated K+ channels in vitro. In the present paper, we report that OSK1 is lethal in mice by intracerebroventricular injection, with a LD50 (50% lethal dose) value of 2 microg/kg. OSK1 blocks K(v)1.1, K(v)1.2, K(v)1.3 channels potently and K(Ca)3.1 channel moderately, with IC50 values of 0.6, 5.4, 0.014 and 225 nM respectively. Structural analogues of OSK1, in which we mutated positions 16 (Glu16-->Lys) and/or 20 (Lys20-->Asp) to amino acid residues that are conserved in all other members of the alpha-KTx3 toxin family except OSK1, were also produced and tested. Among the OSK1 analogues, [K16,D20]-OSK1 (OSK1 with Glu16-->Lys and Lys20-->Asp mutations) shows an increased potency on K(v)1.3 channel, with an IC50 value of 0.003 nM, without loss of activity on K(Ca)3.1 channel. These data suggest that OSK1 or [K16,D20]-OSK1 could serve as leads for the design and production of new immunosuppressive drugs.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Venenos de Escorpión/síntesis química , Venenos de Escorpión/farmacología , Escorpiones/química , Toxinas Biológicas/farmacología , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Inyecciones Intraventriculares , Dosificación Letal Mediana , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/toxicidad , Venenos de Escorpión/química , Venenos de Escorpión/toxicidad , Toxinas Biológicas/síntesis química , Toxinas Biológicas/química , Toxinas Biológicas/toxicidad
3.
Biochem J ; 378(Pt 3): 717-26, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-14674883

RESUMEN

Animal toxins acting on ion channels of excitable cells are principally highly potent short peptides that are present in limited amounts in the venoms of various unrelated species, such as scorpions, snakes, sea anemones, spiders, insects, marine cone snails and worms. These toxins have been used extensively as invaluable biochemical and pharmacological tools to characterize and discriminate between the various ion channel types that differ in ionic selectivity, structure and/or cell function. Alongside the huge molecular and functional diversity of ion channels, a no less impressive structural diversity of animal toxins has been indicated by the discovery of an increasing number of polypeptide folds that are able to target these ion channels. Indeed, it appears that these peptide toxins have evolved over time on the basis of clearly distinct architectural motifs, in order to adapt to different ion channel modulating strategies (pore blockers compared with gating modifiers). Herein, we provide an up-to-date overview of the various types of fold from animal toxins that act on ion channels selective for K+, Na+, Ca2+ or Cl- ions, with special emphasis on disulphide bridge frameworks and structural motifs associated with these peptide folds.


Asunto(s)
Canales Iónicos/antagonistas & inhibidores , Toxinas Biológicas/química , Secuencia de Aminoácidos , Animales , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Canales de Cloruro/antagonistas & inhibidores , Secuencia de Consenso , Disulfuros/análisis , Modelos Moleculares , Datos de Secuencia Molecular , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Pliegue de Proteína , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología , Toxinas Biológicas/farmacología
4.
Biochem J ; 377(Pt 1): 25-36, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-12962541

RESUMEN

Pi1 is a 35-residue scorpion toxin cross-linked by four disulphide bridges that acts potently on both small-conductance Ca2+-activated (SK) and voltage-gated (Kv) K+ channel subtypes. Two approaches were used to investigate the relative contribution of the Pi1 functional dyad (Tyr-33 and Lys-24) to the toxin action: (i) the chemical synthesis of a [A24,A33]-Pi1 analogue, lacking the functional dyad, and (ii) the production of a Pi1 analogue that is phosphorylated on Tyr-33 (P-Pi1). According to molecular modelling, this phosphorylation is expected to selectively impact the two amino acid residues belonging to the functional dyad without altering the nature and three-dimensional positioning of other residues. P-Pi1 was directly produced by peptide synthesis to rule out any possibility of trace contamination by the unphosphorylated product. Both Pi1 analogues were compared with synthetic Pi1 for bioactivity. In vivo, [A24,A33]-Pi1 and P-Pi1 are lethal by intracerebroventricular injection in mice (LD50 values of 100 and 40 microg/mouse, respectively). In vitro, [A24,A33]-Pi1 and P-Pi1 compete with 125I-apamin for binding to SK channels of rat brain synaptosomes (IC50 values of 30 and 10 nM, respectively) and block rat voltage-gated Kv1.2 channels expressed in Xenopus laevis oocytes (IC50 values of 22 microM and 75 nM, respectively), whereas they are inactive on Kv1.1 or Kv1.3 channels at micromolar concentrations. Therefore, although both analogues are less active than Pi1 both in vivo and in vitro, the integrity of the Pi1 functional dyad does not appear to be a prerequisite for the recognition and binding of the toxin to the Kv1.2 channels, thereby highlighting the crucial role of other toxin residues with regard to Pi1 action on these channels. The computed simulations detailing the docking of Pi1 peptides on to the Kv1.2 channels support an unexpected key role of specific basic amino acid residues, which form a basic ring (Arg-5, Arg-12, Arg-28 and Lys-31 residues), in toxin binding.


Asunto(s)
Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Venenos de Escorpión/química , Venenos de Escorpión/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Canal de Potasio Kv.1.2 , Lisina/fisiología , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/síntesis química , Péptidos/metabolismo , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/química , Estructura Terciaria de Proteína , Ratas , Venenos de Escorpión/farmacología , Alineación de Secuencia , Tirosina/fisiología , Xenopus laevis
6.
Toxicon ; 43(8): 909-14, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15208024

RESUMEN

Ion channel-acting toxins are mainly short peptides generally present in minute amounts in the venoms of diverse animal species such as scorpions, snakes, spiders, marine cone snails and sea anemones. Interestingly, these peptides have evolved over time on the basis of clearly distinct architectural motifs present throughout the animal kingdom, but display convergent molecular determinants and functional homologies. As a consequence of this conservation of some key determinants, it has also been evidenced that toxin targets display some common evolutionary origins. Indeed, these peptides often target ion channels and ligand-gated receptors, though other interacting molecules such as enzymes have been further evidenced. In this review, we provide an overview of some selected peptides from various animal species that act on specific K+ conducting voltage-gated ion channels. In particular, we emphasize our global analysis on the structural determinants of these molecules that are required for the recognition of a particular ion channel pore structure, a property that should be correlated to the blocking efficacy of the K+ efflux out of the cell during channel opening. A better understanding of these molecular determinants is valuable to better specify and derive useful peptide pharmacological properties.


Asunto(s)
Péptidos/química , Canales de Potasio/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Modelos Químicos , Conformación Proteica , Relación Estructura-Actividad
7.
Curr Pharm Des ; 14(24): 2503-18, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18781998

RESUMEN

Animal venoms are rich natural sources of bioactive compounds, including peptide toxins acting on the various types of ion channels, i.e. K(+), Na(+), Cl(-) and Ca(2+). Among K+ channel-acting toxins, those selective for voltage-gated K(+) (Kv) channels are widely represented and have been isolated from the venoms of numerous animal species, such as scorpions, sea anemones, snakes, marine cone snails and spiders. The toxins characterized hitherto contain between 22 and 60 amino acid residues, and are cross-linked by two to four disulfide bridges. Depending on their types of fold, toxins can be classified in eight structural categories, which showed a combination of beta-strands, helices, or a mixture of both. The main architectural motifs thereof are referred to as alpha/beta scaffold and inhibitor cystine knot (ICK). A detailed analysis of toxin structures and pharmacological selectivities indicates that toxins exhibiting a similar type of fold can exert their action on several subtypes of Kv channels, whereas a particular Kv channel can be targeted by toxins that possess unrelated folds. Therefore, it appears that the ability of structurally divergent toxins to interact with a particular Kv channel relies onto a similar spatial distribution of amino acid residues that are key to the toxin-channel interaction (rather than the type of toxin fold). The diversity of Kv channel blockers and their therapeutic value in the potential treatment of a number of specific human diseases, especially autoimmune disorders, inflammatory neuropathies and cancer, are reviewed.


Asunto(s)
Diseño de Fármacos , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Ponzoñas/análisis , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/aislamiento & purificación , Péptidos/uso terapéutico , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/fisiología , Conformación Proteica , Alineación de Secuencia
8.
Mol Pharmacol ; 69(1): 354-62, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16234482

RESUMEN

OSK1, a toxin from the venom of the Asian scorpion Orthochirus scrobiculosus, is a 38-residue peptide cross-linked by three disulfide bridges. A structural analog of OSK1, [Lys(16),Asp(20)]-OSK1, was found previously to be one of the most potent blockers of the voltage-gated K(+) channel Kv1.3 hitherto characterized. Here, we demonstrate that progressive trimming of the N-terminal domain of [Lys(16),Asp(20)]-OSK1 results in marked changes in its pharmacological profile, in terms of both K(+) channel affinity and selectivity. Whereas the affinity to Kv1.1 and Kv1.3 did not change significantly, the affinity to Kv1.2 and K(Ca)3.1 was drastically reduced with the truncations. It is surprising that a striking gain in potency was observed for Kv3.2. In contrast, a truncation of the C-terminal domain, expected to partially disrupt the toxin beta-sheet structure, resulted in a significant decrease or a complete loss of activity on all channel types tested. These data highlight the value of structure-function studies on the extended N-terminal domain of [Lys(16),Asp(20)]-OSK1 to identify new analogs with unique pharmacological properties.


Asunto(s)
Péptidos/farmacología , Venenos de Escorpión/química , Toxinas Biológicas/farmacología , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Ratones , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Homología de Secuencia de Aminoácido , Toxinas Biológicas/química
9.
J Pept Sci ; 11(2): 65-8, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15635666

RESUMEN

The 'functional dyad', a well-defined pair of amino acid residues (basic and hydrophobic residues), is a key molecular determinant present in most animal toxins acting on voltage-gated Kv1 channels. It is increasingly used as a working concept to explain how toxins are able to recognize and block their specific ion channel targets. However, other crucial toxin determinants are emerging and the actual role of this 'functional dyad' ought to be clarified, which is the object of the present mini-review.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Secuencia de Aminoácidos , Animales , Modelos Biológicos , Canales de Potasio/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker , Toxinas Biológicas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA