Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NMR Biomed ; 33(11): e4397, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32865259

RESUMEN

In this paper we address the possibility to perform imaging of two samples within the same acquisition time using coupled ceramic resonators and one transmit/receive channel. We theoretically and experimentally compare the operation of our ceramic dual-resonator probe with a wire-wound solenoid probe, which is the standard probe used in ultrahigh-field magnetic resonance microscopy. We show that due to the low-loss ceramics used to fabricate the resonators, and a favorable distribution of the electric field within the conducting sample, a dual probe, which contains two samples, achieves an SNR enhancement by a factor close to the square root of 2 compared with a solenoid optimized for one sample.


Asunto(s)
Cerámica/química , Imagen por Resonancia Magnética/instrumentación , Microscopía/instrumentación , Campos Electromagnéticos , Análisis Numérico Asistido por Computador , Hojas de la Planta/anatomía & histología , Relación Señal-Ruido
2.
Artículo en Inglés | MEDLINE | ID: mdl-30990181

RESUMEN

Change in viscoelastic properties of biological tissues may often be symptomatic of a dysfunction that can be correlated to tissue pathology. Shear wave elastography is an imaging method mainly used to assess stiffness but with the potential to measure viscoelasticity of biological tissues. This can enable tissue characterization; and thus, can be used as a marker to improve diagnosis of pathological lesions. In this study, a frequency-shift method based framework is presented for the reconstruction of viscosity by analyzing the spectral properties of acoustic radiation force-induced shear waves. The aim of the study was to investigate the feasibility of viscosity reconstruction maps in homogeneous as well as heterogeneous samples. Experiments were performed in four in vitro phantoms, two ex vivo porcine liver samples, two ex vivo fatty duck liver samples, and one in vivo fatty goose liver. Successful viscosity maps were reconstructed in homogeneous and heterogeneous phantoms with embedded mechanical inclusions having different geometries. Quantitative values of viscosity obtained for two porcine liver tissues, two fatty duck liver samples, and one goose fatty liver were (mean ± SD) 0.61 ± 0.21, 0.52 ± 0.35; 1.28 ± 0.54, 1.36 ± 0.73, and 1.67 ± 0.70 Pa.s, respectively.

3.
Adv Mater ; 31(30): e1900912, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31099950

RESUMEN

The spatial resolution and signal-to-noise ratio (SNR) attainable in magnetic resonance microscopy (MRM) are limited by intrinsic probe losses and probe-sample interactions. In this work, the possibility to exceed the SNR of a standard solenoid coil by more than a factor-of-two is demonstrated theoretically and experimentally. This improvement is achieved by exciting the first transverse electric mode of a low-loss ceramic resonator instead of using the quasi-static field of the metal-wire solenoid coil. Based on theoretical considerations, a new probe for microscopy at 17 T is developed as a dielectric ring resonator made of ferroelectric/dielectric low-loss composite ceramics precisely tunable via temperature control. Besides the twofold increase in SNR, compared with the solenoid probe, the proposed ceramic probe does not cause static-field inhomogeneity and related image distortion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA