Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 223(10): 1822-1830, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31875909

RESUMEN

BACKGROUND: Plasmodium falciparum transmission depends on mature gametocytes that can be ingested by mosquitoes taking a blood meal on human skin. Although gametocyte skin sequestration has long been hypothesized as important contributor to efficient malaria transmission, this has never been formally tested. METHODS: In naturally infected gametocyte carriers from Burkina Faso, we assessed infectivity to mosquitoes by direct skin feeding and membrane feeding. We directly quantified male and female gametocytes and asexual parasites in finger-prick and venous blood samples, skin biopsy samples, and in of mosquitoes that fed on venous blood or directly on skin. Gametocytes were visualized in skin tissue with confocal microscopy. RESULTS: Although more mosquitoes became infected when feeding directly on skin then when feeding on venous blood (odds ratio, 2.01; 95% confidence interval, 1.21-3.33; P = .007), concentrations of gametocytes were not higher in the subdermal skin vasculature than in other blood compartments; only sparse gametocytes were observed in skin tissue. DISCUSSION: Our data strongly suggest that there is no significant skin sequestration of P. falciparum gametocytes. Gametocyte densities in peripheral blood are thus informative for predicting onward transmission potential to mosquitoes and can be used to target and monitor malaria elimination initiatives.


Asunto(s)
Anopheles , Malaria Falciparum , Animales , Anopheles/parasitología , Burkina Faso , Humanos , Malaria Falciparum/epidemiología , Plasmodium falciparum
2.
Clin Infect Dis ; 73(Suppl_5): S382-S389, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34910181

RESUMEN

BACKGROUND: Intestinal disorders such as environmental enteric dysfunction (EED) are prevalent in low- and middle-income countries (LMICs) and important contributors to childhood undernutrition and mortality. Autopsies are rarely performed in LMICs but minimally invasive tissue sampling is increasingly deployed as a more feasible and acceptable procedure, although protocols have been devoid of intestinal sampling to date. We sought to determine (1) the feasibility of postmortem intestinal sampling, (2) whether autolysis precludes enteric biopsies' utility, and (3) histopathologic features among children who died during hospitalization with acute illness or undernutrition. METHODS: Transabdominal needle and endoscopic forceps upper and lower intestinal sampling were conducted among children aged 1 week to 59 months who died while hospitalized in Blantyre, Malawi. Autolysis ratings were determined for each hematoxylin and eosin slide, and upper and lower intestinal scoring systems were adapted to assess histopathologic features and their severity. RESULTS: Endoscopic and transabdominal sampling procedures were attempted in 28 and 14 cases, respectively, with >90% success obtaining targeted tissue. Varying degrees of autolysis were present in all samples and precluded histopathologic scoring of 6% of 122 biopsies. Greater autolysis in duodenal samples was seen with longer postmortem interval (Beta = 0.06, 95% confidence interval, 0.02-0.11). Histopathologic features identified included duodenal Paneth and goblet cell depletion. Acute inflammation was absent but chronic inflammation was prevalent in both upper and lower enteric samples. Severe chronic rectal inflammation was identified in children as young as 5.5 weeks. CONCLUSIONS: Minimally invasive postmortem intestinal sampling is feasible and identifies histopathology that can inform mortality contributors.


Asunto(s)
Desnutrición , Autopsia/métodos , Biopsia , Niño , Humanos , Lactante , Pobreza , Manejo de Especímenes
3.
Blood ; 122(5): 842-51, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23741007

RESUMEN

Cerebral malaria (CM) is a major cause of mortality in African children and the mechanisms underlying its development, namely how malaria-infected erythrocytes (IEs) cause disease and why the brain is preferentially affected, remain unclear. Brain microhemorrhages in CM suggest a clotting disorder, but whether this phenomenon is important in pathogenesis is debated. We hypothesized that localized cerebral microvascular thrombosis in CM is caused by a decreased expression of the anticoagulant and protective receptors thrombomodulin (TM) and endothelial protein C receptor (EPCR) and that low constitutive expression of these regulatory molecules in the brain make it particularly vulnerable. Autopsies from Malawian children with CM showed cerebral fibrin clots and loss of EPCR, colocalized with sequestered IEs. Using a novel assay to examine endothelial phenotype ex vivo using subcutaneous microvessels, we demonstrated that loss of EPCR and TM at sites of IE cytoadherence is detectible in nonfatal CM. In contrast, although clotting factor activation was seen in the blood of CM patients, this was compensated and did not disseminate. Because of the pleiotropic nature of EPCR and TM, these data implicate disruption of the endothelial protective properties at vulnerable sites and particularly in the brain, linking coagulation and inflammation with IE sequestration.


Asunto(s)
Antígenos CD/metabolismo , Coagulación Sanguínea/fisiología , Encéfalo/parasitología , Endotelio Vascular/metabolismo , Inflamación , Malaria Cerebral/parasitología , Receptores de Superficie Celular/metabolismo , Antígenos CD/fisiología , Población Negra , Coagulación Sanguínea/inmunología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Estudios de Casos y Controles , Niño , Preescolar , Regulación hacia Abajo , Receptor de Proteína C Endotelial , Eritrocitos/parasitología , Eritrocitos/patología , Femenino , Humanos , Lactante , Inflamación/metabolismo , Inflamación/parasitología , Malaria Cerebral/sangre , Malaria Cerebral/inmunología , Malaria Cerebral/metabolismo , Malaui , Masculino , Receptores de Superficie Celular/fisiología , Trombomodulina/metabolismo , Trombomodulina/fisiología
4.
J Infect Dis ; 209(4): 610-5, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24048963

RESUMEN

Endothelial dysregulation is central to the pathogenesis of acute Plasmodium falciparum infection. It has been assumed that this dysregulation resolves rapidly after treatment, but this return to normality has been neither demonstrated nor quantified. We therefore measured a panel of plasma endothelial markers acutely and in convalescence in Malawian children with uncomplicated or cerebral malaria. Evidence of persistent endothelial activation and inflammation, indicated by increased plasma levels of soluble intracellular adhesion molecule 1, angiopoetin 2, and C-reactive protein, were observed at 1 month follow-up visits. These vascular changes may represent a previously unrecognized contributor to ongoing malaria-associated morbidity and mortality.


Asunto(s)
Endotelio/patología , Malaria Cerebral/patología , Malaria Falciparum/patología , Análisis de Varianza , Biomarcadores/sangre , Biomarcadores/metabolismo , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Preescolar , Endotelio/metabolismo , Femenino , Fiebre/sangre , Fiebre/parasitología , Fiebre/patología , Humanos , Inflamación/sangre , Inflamación/parasitología , Inflamación/patología , Molécula 1 de Adhesión Intercelular/sangre , Malaria Cerebral/sangre , Malaria Falciparum/sangre , Malaui , Masculino , Proteínas de Transporte Vesicular/sangre
5.
J Thromb Haemost ; 22(4): 1145-1153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38103733

RESUMEN

BACKGROUND: Adenoviral vector-based COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) is rare but carries significant risks of mortality and long-term morbidity. The underlying pathophysiology of severe disease is still not fully understood. The objectives were to explore the pathophysiological profile and examine for clinically informative biomarkers in patients with severe VITT. METHODS: Twenty-two hospitalized patients with VITT, 9 pre- and 21 post-ChAdOx1 vaccine controls, were recruited across England, United Kingdom. Admission blood samples were analyzed for cytokine profiles, cell death markers (lactate dehydrogenase and circulating histones), neutrophil extracellular traps, and coagulation parameters. Tissue specimens from deceased patients were analyzed. RESULTS: There were strong immune responses characterized by significant elevations in proinflammatory cytokines and T helper 1 and 2 cell activation in patients with VITT. Markers of systemic endothelial activation and coagulation activation in both circulation and organ sections were also significantly elevated. About 70% (n = 15/22) of patients met the International Society for Thrombosis and Haemostasis criteria for disseminated intravascular coagulation despite negligible changes in the prothrombin time. The increased neutrophil extracellular trap formation, in conjunction with marked lymphopenia, elevated lactate dehydrogenase, and circulating histone levels, indicates systemic immune cell injury or death. Both lymphopenia and circulating histone levels independently predicted 28-day mortality in patients with VITT. CONCLUSION: The coupling of systemic cell damage and death with strong immune-inflammatory and coagulant responses are pathophysiologically dominant and clinically relevant in severe VITT.


Asunto(s)
Linfopenia , Púrpura Trombocitopénica Idiopática , Trombocitopenia , Trombosis , Vacunas , Humanos , Histonas , Vacunas contra la COVID-19/efectos adversos , Lactato Deshidrogenasas
6.
Glob Pediatr ; 9: None, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267884

RESUMEN

Objectives: To describe and compare liver mitochondrial and peroxisomal histopathology by nutritional status in children who died following hospitalization for acute illness in Malawi. Methods: Liver tissue was collected using Minimally Invasive Tissue Sampling from eleven children under-five years old who died during hospitalization and were either non-wasted (n = 4), severely wasted (n = 4) or had edematous malnutrition (n = 3). Histology was assessed on hematoxylin and eosin stained slides. Mitochondrial and peroxisomal ultrastructural features were characterized using electron microscopy (EM) and immunofluorescence (IF). Results: Hepatic steatosis was present in 50 % of non-wasted and severely wasted children and all children with edematous malnutrition. Edematous malnutrition was associated with 56 % and 45 % fewer mitochondria than severe wasting (p < 0.001) and no wasting (p = 0.006), respectively, and abnormal mitochondrial morphology compared to severe wasting (p = 0.002) and no wasting (p = 0.035). Peroxisomal abundance was reduced in edematous malnutrition compared to severe wasting (p = 0.005), but did not differ from no-wasting. Conclusion: Edematous malnutrition is associated with reduced abundance and altered morphology of hepatic mitochondria and peroxisomes. Interventions targeting improvements in hepatic metabolic function may be beneficial in improving metabolism and reducing mortality in children with severe malnutrition, particularly in those with nutritional edema.

7.
Sci Transl Med ; 16(764): eadk9149, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259811

RESUMEN

COVID-19 is characterized by a broad range of symptoms and disease trajectories. Understanding the correlation between clinical biomarkers and lung pathology during acute COVID-19 is necessary to understand its diverse pathogenesis and inform more effective treatments. Here, we present an integrated analysis of longitudinal clinical parameters, peripheral blood markers, and lung pathology in 142 Brazilian patients hospitalized with COVID-19. We identified core clinical and peripheral blood signatures differentiating disease progression between patients who recovered from severe disease compared with those who succumbed to the disease. Signatures were heterogeneous among fatal cases yet clustered into two patient groups: "early death" (<15 days until death) and "late death" (>15 days). Progression to early death was characterized systemically and in lung histopathological samples by rapid endothelial and myeloid activation and the presence of thrombi associated with SARS-CoV-2+ macrophages. In contrast, progression to late death was associated with fibrosis, apoptosis, and SARS-CoV-2+ epithelial cells in postmortem lung tissue. In late death cases, cytotoxicity, interferon, and T helper 17 (TH17) signatures were only detectable in the peripheral blood after 2 weeks of hospitalization. Progression to recovery was associated with higher lymphocyte counts, TH2 responses, and anti-inflammatory-mediated responses. By integrating antemortem longitudinal blood signatures and spatial single-cell lung signatures from postmortem lung samples, we defined clinical parameters that could be used to help predict COVID-19 outcomes.


Asunto(s)
COVID-19 , Progresión de la Enfermedad , Pulmón , SARS-CoV-2 , Humanos , COVID-19/sangre , COVID-19/diagnóstico , Pulmón/patología , SARS-CoV-2/aislamiento & purificación , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Análisis de la Célula Individual , Adulto , Brasil , Anciano
8.
Emerg Infect Dis ; 19(6): 981-4, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23735189

RESUMEN

A case of human melioidosis caused by a novel sequence type of Burkholderia pseudomallei occurred in a child in Malawi, southern Africa. A literature review showed that human cases reported from the continent have been increasing.


Asunto(s)
Melioidosis/diagnóstico , Antibacterianos/uso terapéutico , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/aislamiento & purificación , Humanos , Lactante , Malaui , Masculino , Melioidosis/tratamiento farmacológico , Melioidosis/microbiología , Resultado del Tratamiento
9.
Cell Microbiol ; 13(2): 198-209, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21029292

RESUMEN

Plasmodium falciparum malaria is a major cause of morbidity and mortality in African children, and factors that determine the development of uncomplicated (UM) versus cerebral malaria (CM) are not fully understood. We studied the ex vivo responsiveness of microvascular endothelial cells to pro-inflammatory stimulation and compared the findings between CM and UM patients. In patients with fatal disease we compared the properties of vascular endothelial cells cultured from brain tissue to those cultured from subcutaneous tissue, and found them to be very similar. We then isolated, purified and cultured primary endothelial cells from aspirated subcutaneous tissue of patients with CM (EC(CM) ) or UM (EC(UM) ) and confirmed the identity of the cells before analysis. Upon TNF stimulation in vitro, EC(CM) displayed a significantly higher capacity to upregulate ICAM-1, VCAM-1 and CD61 and to produce IL-6 and MCP-1 but not RANTES compared with EC(UM) . The shedding of endothelial microparticles, a recently described parameter of severity in CM, and the cellular level of activated caspase-3 were both significantly greater in EC(CM) than in EC(UM) . These data suggest that inter-individual differences in the endothelial inflammatory response to TNF may be an additional factor influencing the clinical course of malaria.


Asunto(s)
Células Endoteliales/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Encéfalo/inmunología , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Quimiocina CCL2/biosíntesis , Quimiocina CCL5/biosíntesis , Humanos , Integrina beta3/biosíntesis , Molécula 1 de Adhesión Intercelular/biosíntesis , Interleucina-6/biosíntesis , Malaria Falciparum/patología , Plasmodium falciparum/patogenicidad , Molécula 1 de Adhesión Celular Vascular/biosíntesis
10.
Methods Mol Biol ; 2470: 765-777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881388

RESUMEN

In this chapter we present the methods for using biopsies of skin or subcutaneous tissue to examine the interactions between parasitized red blood cells and endothelial cells in patients with malaria infection. Punch biopsy can be used to obtain all skin layers and needle biopsy to obtain subcutaneous tissue. Smears are useful for spreading vessels on a slide for immunofluorescence staining. Specimens can be fixed and embedded for sectioning and traditional histological or immunostaining techniques or confocal microscopy with three-dimensional reconstruction. Finally, endothelium can be dissociated, allowing individual cells to be isolated for culture and ex vivo assays or used for immunophenotyping.


Asunto(s)
Células Endoteliales , Malaria , Adhesión Celular , Eritrocitos , Humanos , Plasmodium falciparum , Piel , Tejido Subcutáneo
11.
Sci Adv ; 8(17): eabm7348, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35476438

RESUMEN

Malaria remains a global health problem causing more than 400,000 deaths annually. Plasmodium parasites, the causative agents of malaria, replicate asexually in red blood cells (RBCs) of their vertebrate host, while a subset differentiates into sexual stages (gametocytes) for mosquito transmission. Parasite replication and gametocyte maturation in the erythropoietic niches of the bone marrow and spleen contribute to pathogenesis and drive transmission, but the mechanisms underlying this organ enrichment remain unknown. Here, we performed a comprehensive analysis of rodent P. berghei infection by flow cytometry and single-cell RNA sequencing. We identified CD71 as a host receptor for reticulocyte invasion and found that parasites metabolically adapt to the host cell environment. Transcriptional analysis and functional assays further revealed a nutrient-dependent tropism for gametocyte formation in reticulocytes. Together, we provide a thorough characterization of host-parasite interactions in erythropoietic niches and define host cell maturation state as the key driver of parasite adaptation.


Asunto(s)
Culicidae , Malaria , Parásitos , Animales , Culicidae/parasitología , Malaria/parasitología , Plasmodium berghei/genética , Diferenciación Sexual
12.
Br J Haematol ; 154(6): 670-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21623767

RESUMEN

Residence in the human erythrocyte is essential for the lifecycle of all Plasmodium that infect man. It is also the phase of the life cycle that causes disease. Although the red blood cell (RBC) is a highly specialized cell for its function of carrying oxygen to and carbon dioxide away from tissues, it is devoid of organelles and lacks any cellular machinery to synthesize new protein. Therefore in order to be able to survive and multiply within the RBC membrane the parasite needs to make many modifications to the infected RBC (iRBC). Plasmodium falciparum (P. falciparum) also expresses parasite-derived proteins on the surface of the iRBC that enable the parasite to cytoadhere to endothelial and other intravascular cells. These RBC modifications are at the root of malaria pathogenesis and, in this ancient disease of man, have formed the epicentre of a genetic 'battle' between parasite and host. This review discusses some of the critical modifications of the RBC by the parasite and some of the consequences of these adaptations on disease in the human host, with an emphasis on advances in understanding of the pathogenesis of severe and cerebral malaria (CM) from recent research.


Asunto(s)
Eritrocitos/parasitología , Malaria Falciparum/sangre , Plasmodium falciparum/fisiología , Animales , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/ultraestructura , Eritrocitos/ultraestructura , Interacciones Huésped-Parásitos , Humanos , Malaria Cerebral/sangre , Malaria Cerebral/parasitología , Malaria Falciparum/parasitología , Microscopía Electrónica de Rastreo , Proteínas Protozoarias/sangre
13.
Mol Cell Neurosci ; 44(3): 210-22, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20353824

RESUMEN

A characteristic of the 7TM-cadherins, Flamingo and Celsr1, is their asymmetric protein distribution and polarized activity at neighboring epithelial cell interfaces along defined axes of planar cell polarity. Here, we describe a novel distribution of Celsr1 protein to the basal surface of neuroepithelial cells within both the early neural tube and a less well-defined group of ventricular zone cells at the midline of the developing spinal cord. Importantly, this basal enrichment is lost in embryos homozygous for a mutant Celsr1 allele. We also demonstrate an intimate association between basal enrichment of Celsr1 protein and dorsal sensory tract morphogenesis, an intriguing spatio-temporal organization of Celsr1 protein along the apico-basal neuroepithelial axis suggestive of multiple Celsr1 protein isoforms and the existence of distinct cell surface Celsr1 protein species with direct signaling potential. Together, these data raise compelling new questions concerning the role of Celsr1 during neural development.


Asunto(s)
Polaridad Celular/fisiología , Embrión de Mamíferos/fisiología , Células Neuroepiteliales/citología , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Embrión de Mamíferos/anatomía & histología , Ratones , Datos de Secuencia Molecular , Morfogénesis/fisiología , Células Neuroepiteliales/metabolismo , Isoformas de Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Alineación de Secuencia , Médula Espinal/citología
14.
Clin Transl Immunology ; 10(4): e1263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968402

RESUMEN

OBJECTIVE: Cerebral malaria (CM) is a complication of Plasmodium falciparum malaria, in which progressive brain swelling is associated with sequestration of parasites and impaired barrier function of the cerebral microvascular endothelium. To test the hypothesis that localised release of matrix metallopeptidase 8 (MMP8) within the retina is implicated in microvascular leak in CM, we examined its expression and association with extravascular fibrinogen leak in a case-control study of post-mortem retinal samples from 13 Malawian children who met the clinical case definition of CM during life. Cases were seven children who were found on post-mortem examination to have 'true-CM' (parasite sequestration in brain blood vessels), whilst controls were six children who had alternative causes of death ('faux-CM', no parasite sequestration in blood vessels). METHODS: We used immunofluorescence microscopy and independent scoring, by two assessors blinded to the CM status, to assess MMP8 expression, extravascular fibrinogen as an indicator of vascular leak and their co-localisation in the retinal microvasculature. RESULTS: In 'true-CM' subjects, MMP8 staining was invariably associated with sequestered parasites and a median of 88% (IQR = 74-91%) of capillaries showed MMP8 staining, compared with 14% (IQR = 3.8-24%) in 'faux-CM' (P-value = 0.001). 41% (IQR = 28-49%) of capillaries in 'true-CM' subjects showed co-localisation of extravascular fibrinogen leak and MMP8 staining, compared with 1.8% of capillaries in 'faux-CM' (IQR = 0-3.9%, P-value = 0.01). Vascular leak was rare in the absence of MMP8 staining. CONCLUSION: Matrix metallopeptidase 8 was extensively expressed in retinal capillaries of Malawian children with malarial retinopathy and strongly associated with vascular leak. Our findings implicate MMP8 as a cause of the vascular endothelial barrier disruption in CM, which may precipitate fatal brain swelling.

15.
Trends Parasitol ; 36(6): 501-503, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32407680

RESUMEN

Neutrophils are abundant innate immune cells with crucial roles in immunity and vascular inflammation. Recent evidence indicates that neutrophils have a dual role in malaria, contributing to both pathogenesis and control of Plasmodium. We discuss emerging mechanisms behind these opposing functions and identify key outstanding questions.


Asunto(s)
Malaria/inmunología , Neutrófilos/inmunología , Humanos , Malaria/parasitología
16.
Annu Rev Pathol ; 15: 315-343, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31648610

RESUMEN

Malaria remains a major public health threat in tropical and subtropical regions across the world. Even though less than 1% of malaria infections are fatal, this leads to about 430,000 deaths per year, predominantly in young children in sub-Saharan Africa. Therefore, it is imperative to understand why a subset of infected individuals develop severe syndromes and some of them die and what differentiates these cases from the majority that recovers. Here, we discuss progress made during the past decade in our understanding of malaria pathogenesis, focusing on the major human parasite Plasmodium falciparum.


Asunto(s)
Malaria/mortalidad , Malaria/patología , Malaria/parasitología , Plasmodium falciparum/patogenicidad , África del Sur del Sahara/epidemiología , Niño , Preescolar , Susceptibilidad a Enfermedades/etiología , Susceptibilidad a Enfermedades/mortalidad , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/etiología , Malaria Falciparum/patología , Índice de Severidad de la Enfermedad
17.
Wellcome Open Res ; 5: 34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32724861

RESUMEN

Background: Sequestration and cytoadherence of Plasmodium falciparum-infected erythrocytes (IE) to microvascular endothelium alters endothelial barrier function and plays a role in the pathogenesis of severe malaria. Binding of IE is mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1) and the PfEMP1 variants that binds to endothelial protein C receptor (EPCR) have, in particular, been associated with the dysregulation of the coagulation/inflammation pathways in endothelial cells. This has prompted speculation about the role of protease-activated receptor-1 (PAR1) activation and signalling in causing endothelial activation and loss of barrier function in cerebral malaria. Methods: We used a co-culture of primary human brain microvascular endothelial cells (HBMEC) with P. falciparum material, recombinant PfEMP1 or lysates from IE, and measured barrier function by trans endothelial electrical resistance (TEER).  A selection of PAR1 inhibitors was tested for their ability to reverse the P. falciparum and thrombin induced decrease in barrier function. Results: An initial screen in the presence of recombinant PfEMP1 identified a few inhibitors that were able to reduce the rapid thrombin-induced barrier disruption even when activated protein C (aPC) was unable to do so. However, in the IE lysate co-culture system we identified a mechanism that slowly reduces barrier function and which is insensitive to PAR1 inhibitors. Conclusions: The selected PAR1 inhibitors were able to reverse the disruption of barrier function by thrombin but did not reverse the IE lysate induced disruption of barrier function, implicating a different PAR1-independent mechanism.  These findings have implications for the design of adjunct therapies to reduce brain swelling in cerebral malaria.

18.
Blood Adv ; 4(13): 2851-2864, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32579667

RESUMEN

Microvascular thrombosis and blood-brain barrier (BBB) breakdown are key components of cerebral malaria (CM) pathogenesis in African children and are implicated in fatal brain swelling. How Plasmodium falciparum infection causes this endothelial disruption and why this occurs, particularly in the brain, is not fully understood. In this study, we have demonstrated that circulating extracellular histones, equally of host and parasite origin, are significantly elevated in CM patients. Higher histone levels are associated with brain swelling on magnetic resonance imaging. On postmortem brain sections of CM patients, we found that histones are colocalized with P falciparum-infected erythrocytes sequestered inside small blood vessels, suggesting that histones might be expelled locally during parasite schizont rupture. Histone staining on the luminal vascular surface colocalized with thrombosis and leakage, indicating a possible link between endothelial surface accumulation of histones and coagulation activation and BBB breakdown. Supporting this, patient sera or purified P falciparum histones caused disruption of barrier function and were toxic to cultured human brain endothelial cells, which were abrogated with antihistone antibody and nonanticoagulant heparin. Overall, our data support a role for histones of parasite and host origin in thrombosis, BBB breakdown, and brain swelling in CM, processes implicated in the causal pathway to death. Neutralizing histones with agents such as nonanticoagulant heparin warrant exploration to prevent brain swelling in the development or progression of CM and thereby to improve outcomes.


Asunto(s)
Malaria Cerebral , Parásitos , Trombosis , Animales , Encéfalo , Niño , Células Endoteliales , Endotelio , Histonas , Humanos , Plasmodium falciparum , Trombosis/etiología
19.
EMBO Mol Med ; 11(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30610112

RESUMEN

Sequestration of Plasmodium falciparum-infected erythrocytes (IE) within the brain microvasculature is a hallmark of cerebral malaria (CM). Using a microchannel flow adhesion assay with TNF-activated primary human microvascular endothelial cells, we demonstrate that IE isolated from Malawian paediatric CM cases showed increased binding to brain microvascular endothelial cells compared to IE from uncomplicated malaria (UM) cases. Further, UM isolates showed significantly greater adhesion to dermal than to brain microvascular endothelial cells. The major mediator of parasite adhesion is P. falciparum erythrocyte membrane protein 1, encoded by var genes. Higher levels of var gene transcripts predicted to bind host endothelial protein C receptor (EPCR) and ICAM-1 were detected in CM isolates. These data provide further evidence for differential tissue binding in severe and uncomplicated malaria syndromes, and give additional support to the hypothesis that CM pathology is based on increased cytoadherence of IE in the brain microvasculature.


Asunto(s)
Encéfalo/patología , Adhesión Celular , Células Endoteliales/fisiología , Eritrocitos/parasitología , Malaria Cerebral/patología , Plasmodium falciparum/crecimiento & desarrollo , Encéfalo/parasitología , Células Cultivadas , Niño , Preescolar , Femenino , Humanos , Lactante , Malaria Cerebral/parasitología , Masculino , Modelos Biológicos
20.
Lancet Respir Med ; 7(7): 581-593, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31196803

RESUMEN

BACKGROUND: Fluid resuscitation is the recommended management of shock, but increased mortality in febrile African children in the FEAST trial. We hypothesised that fluid bolus-induced deaths in FEAST would be associated with detectable changes in cardiovascular, neurological, or respiratory function, oxygen carrying capacity, and blood biochemistry. METHODS: We developed composite scores for respiratory, cardiovascular, and neurological function using vital sign data from the FEAST trial, and used them to compare participants from FEAST with those from four other cohorts and to identify differences between the bolus (n=2097) and no bolus (n=1044) groups of FEAST. We calculated the odds of adverse outcome for each ten-unit increase in baseline score using logistic regression for each cohort. Within FEAST participants, we also compared haemoglobin and plasma biochemistry between bolus and non-bolus patients, assessed the effects of these factors along with the vital sign scores on the contribution of bolus to mortality using Cox proportional hazard models, and used Bayesian clustering to identify subgroups that differed in response to bolus. The FEAST trial is registered with ISRCTN, number ISRCTN69856593. FINDINGS: Increasing respiratory (odds ratio 1·09, 95% CI 1·07-1·11), neurological (1·26, 1·21-1·31), and cardiovascular scores (1·09, 1·05-1·14) were associated with death in FEAST (all p<0·0001), and with adverse outcomes for specific scores in the four other cohorts. In FEAST, fluid bolus increased respiratory and neurological scores and decreased cardiovascular score at 1 h after commencement of the infusion. Fluid bolus recipients had mean 0·33 g/dL (95% CI 0·20-0·46) reduction in haemoglobin concentration after 8 h (p<0·0001), and at 24 h had a decrease of 1·41 mEq/L (95% CI 0·76-2·06; p=0·0002) in mean base excess and increase of 1·65 mmol/L (0·47-2·8; p=0·0070) in mean chloride, and a decrease of 0·96 mmol/L (0·45 to 1·47; p=0·0003) in bicarbonate. There were similar effects of fluid bolus in three patient subgroups, identified on the basis of their baseline characteristics. Hyperchloraemic acidosis and respiratory and neurological dysfunction induced by saline or albumin bolus explained the excess mortality due to bolus in Cox survival models. INTERPRETATION: In the resuscitation of febrile children, albumin and saline boluses can cause respiratory and neurological dysfunction, hyperchloraemic acidosis, and reduction in haemoglobin concentration. The findings support the notion that fluid resuscitation with unbuffered electrolyte solutions may cause harm and their use should be cautioned. The effects of lower volumes of buffered solutions should be evaluated further. FUNDING: Medical Research Council, Department for International Development, National Institute for Health Research, Imperial College Biomedical Research Centre.


Asunto(s)
Albúminas/uso terapéutico , Fluidoterapia/efectos adversos , Resucitación/efectos adversos , Solución Salina/uso terapéutico , Choque/mortalidad , Choque/terapia , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Fluidoterapia/métodos , Humanos , Lactante , Masculino , Resucitación/métodos , Medición de Riesgo , Choque/etiología , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA