Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Immunity ; 53(5): 1108-1122.e5, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33128875

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is a global public health crisis. However, little is known about the pathogenesis and biomarkers of COVID-19. Here, we profiled host responses to COVID-19 by performing plasma proteomics of a cohort of COVID-19 patients, including non-survivors and survivors recovered from mild or severe symptoms, and uncovered numerous COVID-19-associated alterations of plasma proteins. We developed a machine-learning-based pipeline to identify 11 proteins as biomarkers and a set of biomarker combinations, which were validated by an independent cohort and accurately distinguished and predicted COVID-19 outcomes. Some of the biomarkers were further validated by enzyme-linked immunosorbent assay (ELISA) using a larger cohort. These markedly altered proteins, including the biomarkers, mediate pathophysiological pathways, such as immune or inflammatory responses, platelet degranulation and coagulation, and metabolism, that likely contribute to the pathogenesis. Our findings provide valuable knowledge about COVID-19 biomarkers and shed light on the pathogenesis and potential therapeutic targets of COVID-19.


Asunto(s)
Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Plasma/metabolismo , Neumonía Viral/sangre , Neumonía Viral/patología , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus , Biomarcadores/sangre , Proteínas Sanguíneas/metabolismo , COVID-19 , Infecciones por Coronavirus/clasificación , Infecciones por Coronavirus/metabolismo , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Pandemias/clasificación , Neumonía Viral/clasificación , Neumonía Viral/metabolismo , Proteómica , Reproducibilidad de los Resultados , SARS-CoV-2
2.
J Virol ; 94(3)2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31694940

RESUMEN

RNA interference (RNAi) is a conserved antiviral immune defense in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs) to counteract antiviral RNAi. Alphaviruses are a large group of positive-stranded RNA viruses that maintain their transmission and life cycles in both mosquitoes and mammals. However, there is little knowledge about how alphaviruses antagonize RNAi in both host organisms. In this study, we identified that Semliki Forest virus (SFV) capsid protein can efficiently suppress RNAi in both insect and mammalian cells by sequestrating double-stranded RNA and small interfering RNA. More importantly, when the VSR activity of SFV capsid was inactivated by reverse genetics, the resulting VSR-deficient SFV mutant showed severe replication defects in mammalian cells, which could be rescued by blocking the RNAi pathway. Besides, capsid protein of Sindbis virus also inhibited RNAi in cells. Together, our findings show that SFV uses capsid protein as VSR to antagonize RNAi in infected mammalian cells, and this mechanism is probably used by other alphaviruses, which shed new light on the knowledge of SFV and alphavirus.IMPORTANCE Alphaviruses are a genus of positive-stranded RNA viruses and include numerous important human pathogens, such as Chikungunya virus, Ross River virus, Western equine encephalitis virus, etc., which create the emerging and reemerging public health threat worldwide. RNA interference (RNAi) is one of the most important antiviral mechanisms in plants and insects. Accumulating evidence has provided strong support for the existence of antiviral RNAi in mammals. In response to antiviral RNAi, viruses have evolved to encode viral suppressors of RNAi (VSRs) to antagonize the RNAi pathway. It is unclear whether alphaviruses encode VSRs that can suppress antiviral RNAi during their infection in mammals. In this study, we first uncovered that capsid protein encoded by Semliki Forest virus (SFV), a prototypic alphavirus, had a potent VSR activity that can antagonize antiviral RNAi in the context of SFV infection in mammalian cells, and this mechanism is probably used by other alphaviruses.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Interferencia de ARN/fisiología , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/metabolismo , Animales , Cápside , Línea Celular , Virus Chikungunya/fisiología , Drosophila , Virus de la Encefalitis Equina del Oeste/fisiología , Células HEK293 , Humanos , ARN Interferente Pequeño , ARN Viral , Virus Sindbis/fisiología , Virión , Replicación Viral
3.
Chin Chem Lett ; 32(10): 3019-3022, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33840982

RESUMEN

The wide-spreading SARS-CoV-2 virus has put the world into boiling water for more than a year, however pharmacological therapies to act effectively against coronavirus disease 2019 (COVID-19) remain elusive. Chloroquine (CQ), an antimalarial drug, was found to exhibit promising antiviral activity in vitro and in vivo at a high dosage, thus CQ was approved by the FDA for the emergency use authorization (EUA) in the fight against COVID-19 in the US, but later was revoked the EUA status due to the severe clinical toxicity. Herein, we show that supramolecular formulation of CQ by a macrocyclic host, curcurbit[7]uril (CB[7]), reduced its non-specific toxicity and improved its antiviral activity against coronavirus, working in synergy with CB[7]. CB[7] was found to form 1:1 host-guest complexes with CQ, with a binding constant of ∼104 L/mol. The CQ-CB[7] formulation decreased the cytotoxicity of CQ against Vero E6 and L-02 cell lines. In particular, the cytotoxicity of CQ (60 µmol/L) against both Vero E6 cell line and L-02 cell lines was completely inhibited in the presence of 300 µmol/L and 600 µmol/L CB[7], respectively. Furthermore, the CB[7] alone showed astonishing antiviral activity in SARS-CoV-2 infected Vero E6 cells and mouse hepatitis virus strain A59 (MHV-A59) infected N2A cells, and synergistically improved the antiviral activity of CQ-CB[7], suggesting that CB[7]-based CQ formulation has a great potential as a safe and effective antiviral agent against SARS-CoV-2 and other coronavirus.

4.
J Gen Virol ; 101(10): 1069-1078, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32667281

RESUMEN

RNA interference (RNAi) is a potent antiviral defence mechanism in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs). Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus in the family Picornaviridae, and has been reported to be a major causative pathogen for viral myocarditis. Despite the importance of CVB3, it is unclear whether CVB3 can also encode proteins that suppress RNAi. Here, we showed that the CVB3 nonstructural protein 3A suppressed RNAi triggered by either small hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) in mammalian cells. We further uncovered that CVB3 3A interacted directly with double-stranded RNAs (dsRNAs) and siRNAs in vitro. Through mutational analysis, we found that the VSR activity of CVB3 3A was significantly reduced by mutations of D24A/L25A/L26A, Y37A/C38A and R60A in conserved residues. In addition, the 3A protein encoded by coxsackievirus B5 (CVB5), another member of Enterovirus, also showed VSR activity. Taken together, our findings showed that CVB3 3A has in vitro VSR activity, thereby providing insights into the pathogenesis of CVB3 and other enteroviruses.


Asunto(s)
Enterovirus Humano B/fisiología , Interferencia de ARN , Proteínas Virales/metabolismo , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidad , Células HEK293 , Humanos , Mutación Puntual , Multimerización de Proteína , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , Proteínas Virales/química , Proteínas Virales/genética
5.
J Virol ; 92(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29618641

RESUMEN

As a virus-encoded actin nucleation promoting factor (NPF), P78/83 induces actin polymerization to assist in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) propagation. According to our previous study, although P78/83 actively undergoes ubiquitin-independent proteasomal degradation, AcMNPV encodes budded virus/occlusion derived virus (BV/ODV)-C42 (C42), which allows P78/83 to function as a stable NPF by inhibiting its degradation during viral infection. However, whether there are other viral proteins involved in regulating P78/83-induced actin polymerization has yet to be determined. In this study, we found that Ac102, an essential viral gene product previously reported to play a key role in mediating the nuclear accumulation of actin during AcMNPV infection, is a novel regulator of P78/83-induced actin polymerization. By characterizing an ac102 knockout bacmid, we demonstrated that Ac102 participates in regulating nuclear actin polymerization as well as the morphogenesis and distribution of capsid structures in the nucleus. These regulatory effects are heavily dependent on an interaction between Ac102 and C42. Further investigation revealed that Ac102 binds to C42 to suppress K48-linked ubiquitination of C42, which decreases C42 proteasomal degradation and consequently allows P78/83 to function as a stable NPF to induce actin polymerization. Thus, Ac102 and C42 form a regulatory cascade to control viral NPF activity, representing a sophisticated mechanism for AcMNPV to orchestrate actin polymerization in both a ubiquitin-dependent and ubiquitin-independent manner.IMPORTANCE Actin is one of the most functionally important proteins in eukaryotic cells. Morphologically, actin can be found in two forms: a monomeric form called globular actin (G-actin) and a polymeric form called filamentous actin (F-actin). G-actin can polymerize to form F-actin, and nucleation promoting factor (NPF) is the initiator of this process. Many viral pathogens harness the host actin polymerization machinery to assist in virus propagation. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) induces actin polymerization in host cells. P78/83, a viral NPF, is responsible for this process. Previously, we identified that BV/ODV-C42 (C42) binds to P78/83 and protects it from degradation. In this report, we determined that another viral protein, Ac102, is involved in modulating C42 ubiquitination and, consequently, ensures P78/83 activity as an NPF to initiate actin polymerization. This regulatory cascade represents a novel mechanism by which a virus can harness the cellular actin cytoskeleton to assist in viral propagation.


Asunto(s)
Actinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo Mediador/metabolismo , Nucleopoliedrovirus/crecimiento & desarrollo , Replicación Viral/fisiología , Animales , Proteínas de la Cápside/metabolismo , Línea Celular , Núcleo Celular/virología , Técnicas de Inactivación de Genes , Péptidos y Proteínas de Señalización Intracelular/genética , Nucleopoliedrovirus/metabolismo , Polimerizacion , Células Sf9 , Spodoptera/virología , Ubiquitinación
6.
PLoS Pathog ; 12(11): e1005994, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27802336

RESUMEN

Actin, nucleation-promoting factors (NPFs), and the actin-related protein 2/3 complex (Arp2/3) are key elements of the cellular actin polymerization machinery. With nuclear actin polymerization implicated in ever-expanding biological processes and the discovery of the nuclear import mechanisms of actin and NPFs, determining Arp2/3 nucleo-cytoplasmic shuttling mechanism is important for understanding the function of nuclear actin. A unique feature of alphabaculovirus infection of insect cells is the robust nuclear accumulation of Arp2/3, which induces actin polymerization in the nucleus to assist in virus replication. We found that Ac34, a viral late gene product encoded by the alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is involved in Arp2/3 nuclear accumulation during virus infection. Further assays revealed that the subcellular distribution of Arp2/3 under steady-state conditions is controlled by chromosomal maintenance 1 (CRM1)-dependent nuclear export. Upon AcMNPV infection, Ac34 inhibits CRM1 pathway and leads to Arp2/3 retention in the nucleus.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Carioferinas/metabolismo , Nucleopoliedrovirus/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Replicación Viral/fisiología , Animales , Núcleo Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Células Sf9 , Transfección , Proteínas Virales/metabolismo , Proteína Exportina 1
7.
J Biol Chem ; 290(15): 9533-41, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25691574

RESUMEN

Actin polymerization induced by nucleation promoting factors (NPFs) is one of the most fundamental biological processes in eukaryotic cells. NPFs contain a conserved output domain (VCA domain) near the C terminus, which interacts with and activates the cellular actin-related protein 2/3 complex (Arp2/3) to induce actin polymerization and a diverse regulatory domain near the N terminus. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsid protein P78/83 is a virus-encoded NPF that contains a C-terminal VCA domain and induces actin polymerization in virus-infected cells. However, there is no similarity between the N terminus of P78/83 and that of other identified NPFs, suggesting that P78/83 may possess a unique regulatory mechanism. In this study, we identified a multifunctional regulatory sequence (MRS) located near the N terminus of P78/83 and determined that one of its functions is to serve as a degron to mediate P78/83 degradation in a proteasome-dependent manner. In AcMNPV-infected cells, the MRS also binds to another nucleocapsid protein, BV/ODV-C42, which stabilizes P78/83 and modulates the P78/83-Arp2/3 interaction to orchestrate actin polymerization. In addition, the MRS is also essential for the incorporation of P78/83 into the nucleocapsid, ensuring virion mobility powered by P78/83-induced actin polymerization. The triple functions of the MRS enable P78/83 to serve as an essential viral protein in the AcMNPV replication cycle, and the possible roles of the MRS in orchestrating the virus-induced actin polymerization and viral genome decapsidation are discussed.


Asunto(s)
Actinas/metabolismo , Proteínas de la Nucleocápside/genética , Nucleopoliedrovirus/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Interacciones Huésped-Patógeno , Proteínas de Insectos/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Mariposas Nocturnas/virología , Proteínas de la Nucleocápside/metabolismo , Nucleopoliedrovirus/metabolismo , Nucleopoliedrovirus/fisiología , Polimerizacion , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido , Células Sf9 , Spodoptera , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
J Gen Virol ; 95(Pt 11): 2531-2539, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25006078

RESUMEN

The occlusion-derived viruses (ODVs) of baculoviruses are responsible for oral infection of insect hosts, whereas budded viruses (BVs) are responsible for systemic infection within the host. The ODV membrane proteins play crucial roles in mediating virus entry into midgut epithelium cells to initiate infection and are important factors in host-range determination. For Autographa californica multiple nucleopolyhedrovirus (AcMNPV), seven conserved ODV membrane proteins have been shown to be essential for oral infectivity and are called per os infectivity factors (PIFs). Information on the function of the individual PIF proteins in virus entry is limited, partly due to the lack of a good in vitro system for monitoring ODV entry. Here, we constructed a baculovirus with EGFP fused to the nucleocapsid to monitor virus entry into primary midgut epithelium cells ex vivo using confocal fluorescence microscopy. The EGFP-labelled virus showed similar BV virulence and ODV infectivity as WT virus. The ability to bind and enter host cells was then visualized for WT AcMNPV and viruses with mutations in P74 (PIF0), PIF1 or PIF2, showing that P74 is required for ODV binding, whilst PIF1 and PIF2 play important roles in the entry of ODV after binding to midgut cells. This is the first live imaging of ODV entry into midgut cells and complements the genetic and biochemical evidence for the role of PIFs in the oral infection process.


Asunto(s)
Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/patogenicidad , Animales , Sistema Digestivo/virología , Células Epiteliales/virología , Proteínas Fluorescentes Verdes/genética , Cuerpos de Inclusión Viral/fisiología , Mutación , Nucleopoliedrovirus/genética , Proteínas Recombinantes de Fusión/genética , Células Sf9 , Spodoptera , Proteínas del Envoltorio Viral/fisiología , Virulencia/genética , Virulencia/fisiología , Factores de Virulencia/fisiología , Internalización del Virus
9.
Virus Res ; 303: 198504, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34271037

RESUMEN

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) assembles its nucleocapsids and occlusion-derived virions (ODVs) in the nucleus, which requires AcMNPV regulation for viral structural proteins to accumulate in the nucleus during its replication in cells. It is generally accepted that the nuclear import receptor plays a predominant role in this process. CRM1 is a nuclear export receptor that forms an export complex with its cargo protein to exit the nucleus. We previously discovered that AcMNPV inhibited CRM1-dependent nuclear export by the viral protein Ac34. This finding suggested that Ac34 could sequester CRM1-dependent proteins in the nucleus and play a novel role in the nuclear accumulation of viral structural proteins. Using the CRM1 inhibitor leptomycin B (LMB), we demonstrated that CRM1 inhibition promoted AcMNPV replication, as LMB treatment readily increased the virus titer, and even functionally surrogate Ac34 to rescue the infectivity of an ac34-knockout virus. To elucidate whether CRM1 inhibition contributes to the nuclear accumulation of viral structural proteins, we systematically analyzed the impact of CRM1 inhibition on viral protein spatial distribution patterns. We found that the nucleocapsid protein Ac102 and ODV envelope protein E26 were retained in the nucleus in response to CRM1 inhibition by Ac34. This finding indicates that AcMNPV is evolving to simultaneously exploit bidirectional nucleocytoplasmic trafficking to assist in viral replication.


Asunto(s)
Proteínas Virales , Replicación Viral , Transporte Activo de Núcleo Celular , Animales , Nucleopoliedrovirus , Células Sf9 , Spodoptera , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/metabolismo , Replicación Viral/fisiología
10.
Cell Rep ; 34(7): 108761, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33567255

RESUMEN

Coronavirus disease 2019 (COVID-19) is a current global health threat caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that SARS-CoV-2 elicits a dysregulated immune response and a delayed interferon (IFN) expression in patients, which contribute largely to the viral pathogenesis and development of COVID-19. However, underlying mechanisms remain to be elucidated. Here, we report the activation and repression of the innate immune response by SARS-CoV-2. We show that SARS-CoV-2 RNA activates the RIG-I-MAVS-dependent IFN signaling pathway. We further uncover that ORF9b immediately accumulates and antagonizes the antiviral type I IFN response during SARS-CoV-2 infection on primary human pulmonary alveolar epithelial cells. ORF9b targets the nuclear factor κB (NF-κB) essential modulator NEMO and interrupts its K63-linked polyubiquitination upon viral stimulation, thereby inhibiting the canonical IκB kinase alpha (IKKα)/ß/γ-NF-κB signaling and subsequent IFN production. Our findings thus unveil the innate immunosuppression by ORF9b and provide insights into the host-virus interplay during the early stage of SARS-CoV-2 infection.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/genética , Quinasa I-kappa B/metabolismo , SARS-CoV-2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , COVID-19/inmunología , COVID-19/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Células HEK293 , Humanos , Inmunidad Innata/inmunología , Interferón Tipo I/metabolismo , Interferones/metabolismo , FN-kappa B/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Cultivo Primario de Células , Receptores de Ácido Retinoico/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Transducción de Señal , Ubiquitinación
11.
Virol Sin ; 35(4): 436-444, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31777009

RESUMEN

RNAi interference (RNAi) is an evolutionarily conserved post-transcriptional gene silencing mechanism and has been well recognized as an important antiviral immunity in eukaryotes. Numerous viruses have been shown to encode viral suppressors of RNAi (VSRs) to antagonize antiviral RNAi. Hepatitis C virus (HCV) is a medically important human pathogen that causes acute and chronic hepatitis. In this study, we screened all the nonstructural proteins of HCV and found that HCV NS2 could suppress RNAi induced either by small hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) in mammalian cells. Moreover, we demonstrated that NS2 could suppress RNAi via its direct interaction with double-stranded RNAs (dsRNAs) and siRNAs, and further identified that the cysteine 184 of NS2 is required for the RNAi suppression activity through a serial of point mutation analyses. Together, our findings uncovered that HCV NS2 can act as a VSR in vitro, thereby providing novel insights into the life cycle and virus-host interactions of HCV.


Asunto(s)
Interacciones Microbiota-Huesped/genética , Interferencia de ARN , Proteínas no Estructurales Virales/genética , Células HEK293 , Hepacivirus , Humanos , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , Proteínas no Estructurales Virales/metabolismo
12.
Virol Sin ; 35(3): 321-329, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32500504

RESUMEN

The ongoing outbreak of Coronavirus Disease 2019 (COVID-19) has become a global public health emergency. SARS-coronavirus-2 (SARS-CoV-2), the causative pathogen of COVID-19, is a positive-sense single-stranded RNA virus belonging to the family Coronaviridae. For RNA viruses, virus-encoded RNA helicases have long been recognized to play pivotal roles during viral life cycles by facilitating the correct folding and replication of viral RNAs. Here, our studies show that SARS-CoV-2-encoded nonstructural protein 13 (nsp13) possesses the nucleoside triphosphate hydrolase (NTPase) and RNA helicase activities that can hydrolyze all types of NTPs and unwind RNA helices dependently of the presence of NTP, and further characterize the biochemical characteristics of these two enzymatic activities associated with SARS-CoV-2 nsp13. Moreover, we found that some bismuth salts could effectively inhibit both the NTPase and RNA helicase activities of SARS-CoV-2 nsp13 in a dose-dependent manner. Thus, our findings demonstrate the NTPase and helicase activities of SARS-CoV-2 nsp13, which may play an important role in SARS-CoV-2 replication and serve as a target for antivirals.


Asunto(s)
Betacoronavirus/metabolismo , Bismuto/farmacología , Metiltransferasas/metabolismo , Nucleósido-Trifosfatasa/efectos de los fármacos , ARN Helicasas/efectos de los fármacos , Sales (Química)/farmacología , Proteínas no Estructurales Virales/metabolismo , Adenosina Trifosfatasas/efectos de los fármacos , Adenosina Trifosfatasas/metabolismo , Betacoronavirus/enzimología , Betacoronavirus/genética , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Metiltransferasas/genética , Nucleósido-Trifosfatasa/genética , Nucleósido-Trifosfatasa/metabolismo , Pandemias , Neumonía Viral/virología , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave , Proteínas no Estructurales Virales/genética , Replicación Viral
13.
Natl Sci Rev ; 7(7): 1157-1168, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34676128

RESUMEN

The pandemic of the coronavirus disease 2019 (COVID-19) has become a global public health crisis. The symptoms of COVID-19 range from mild to severe, but the physiological changes associated with COVID-19 are barely understood. In this study, we performed targeted metabolomic and lipidomic analyses of plasma from a cohort of patients with COVID-19 who had experienced different symptoms. We found that metabolite and lipid alterations exhibit apparent correlation with the course of disease in these patients, indicating that the development of COVID-19 affected their whole-body metabolism. In particular, malic acid of the TCA cycle and carbamoyl phosphate of the urea cycle result in altered energy metabolism and hepatic dysfunction, respectively. It should be noted that carbamoyl phosphate is profoundly down-regulated in patients who died compared with patients with mild symptoms. And, more importantly, guanosine monophosphate (GMP), which is mediated not only by GMP synthase but also by CD39 and CD73, is significantly changed between healthy subjects and patients with COVID-19, as well as between the mild and fatal cases. In addition, dyslipidemia was observed in patients with COVID-19. Overall, the disturbed metabolic patterns have been found to align with the progress and severity of COVID-19. This work provides valuable knowledge about plasma biomarkers associated with COVID-19 and potential therapeutic targets, as well as an important resource for further studies of the pathogenesis of COVID-19.

14.
Virus Res ; 273: 197758, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31541668

RESUMEN

The baculovirus expression vector system (BEVS) is one of the most powerful eukaryotic expression systems. Recombinant protein expression is usually controlled by promoters of the baculovirus very late genes (i.e., polyhedrin and p10); therefore, identifying novel regulatory factors for these promoters is key to increasing BEVS productivity. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the viral vector most frequently used in BEVS. VP39 is the major nucleocapsid protein of AcMNPV and plays a pivotal role in nucleocapsid assembly in the nucleus. In this study, we found that knocking out vp39 from the AcMNPV genome resulted in decreased protein abundance of polyhedrin and P10. Further assays revealed that the mRNA transcripts and the promoter activities of polyhedrin and p10 were decreased in the absence of vp39, suggesting that VP39 contributes to the activity of the very late viral gene promoters and may represent a means of optimizing the current BEVS.


Asunto(s)
Proteínas de la Cápside/genética , Nucleopoliedrovirus/química , Regiones Promotoras Genéticas , Transcripción Genética , Animales , Línea Celular , Técnicas de Inactivación de Genes , Genoma Viral , Nucleopoliedrovirus/genética , Proteínas de la Matriz de Cuerpos de Oclusión/genética , Células Sf9 , Spodoptera , Proteínas Virales/genética
15.
Virol Sin ; 33(2): 162-172, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29594956

RESUMEN

Hepatitis B virus (HBV) infection is one of the major problems that threatens global health. There have been many studies on HBV, but the relationship between HBV and host factors is largely unexplored and more studies are needed to clarify these interactions. Filamin B is an actin-binding protein that acts as a cytoskeleton protein, and it is involved in cell development and several signaling pathways. In this study, we showed that filamin B interacted with HBV core protein, and the interaction promoted HBV replication. The interaction between filamin B and core protein was observed in HEK 293T, Huh7 and HepG2 cell lines by co-immunoprecipitation and co-localization immnofluoresence. Overexpression of filamin B increased the levels of HBV total RNAs and pre-genome RNA (pgRNA), and improved the secretion level of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg). In contrast, filamin B knockdown inhibited HBV replication, decreased the level of HBV total RNAs and pgRNA, and reduced the secretion level of HBsAg and HBeAg. In addition, we found that filamin B and core protein may interact with each other via four blocks of argentine residues at the C-terminus of core protein. In conclusion, we identify filamin B as a novel host factor that can interact with core protein to promote HBV replication in hepatocytes. Our study provides new insights into the relationship between HBV and host factors and may provide new strategies for the treatment of HBV infection.


Asunto(s)
Filaminas/metabolismo , Antígenos del Núcleo de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Interacciones Huésped-Patógeno , Replicación Viral , Línea Celular , Expresión Génica , Técnicas de Silenciamiento del Gen , Antígenos de Superficie de la Hepatitis B/metabolismo , Antígenos e de la Hepatitis B/metabolismo , Hepatocitos/virología , Humanos , Mapeo de Interacción de Proteínas , ARN Viral/biosíntesis
16.
Bing Du Xue Bao ; 33(1): 24-35, 2017 Jan.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-30702818

RESUMEN

During replication of the hepatitis B virus (HBV) in liver cells, the reverse transcription of pre-genomic RNA (pgRNA) is initiated by protein priming at an RNA packaging signal ε located near the 5' end of pgRNA. Heat-shock proteins (Hsps) such as Hsc70, Hsp40, and Hsp90 have been reported to be involved in the reconstitution of HBV polymerase (P protein) and E. The P - E complex initiates the reverse transcription and assembly of nucleocapsids. Hence, blockade of P - ε interactions is an attractive target for drug intervention. We explored the influence of the Hsp inhibitor KNK437 on replication and transcription of the HBV. Three working models were applied: HepG2. 2. 15 cell line; Huh7 cells transfected transiently with the 1. 05 X HBV (pCH9-3091) plasmid; Huh7 cells transfected transiently with the 1. 3 X HBV (pGEM-1. 3 X HBV) plasmid. Cytotoxic effects of KNK437 were detected by the CCK-8 method. Levels of hepatitis B surface antigen (HBsAg) and hepatitis B viral protein (HBeAg) in the media secreted from cells were measured using an ELISA. Intracellular HBV DNAs within nucleocapsids were measured by quantitative polymerase chain reaction (qPCR), and intracellular HBV RNAs by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Transcription of Hsps in cells was determined by qRT-PCR. Data suggested that KNK437 reduced the extracellular secretion of HBsAg and HBeAg in most cases; it downregulated expression of intracellular HBV DNAs within nucleocapsids and RNA transcripts. The lowest rate of viral DNAs in KNK437-treated hepatocytes for all experimental groups was ~1. 5%o (control, 100%), whereas that for RNAs was ~30%. Western blotting revealed KNK437 to inhibit intracellular core expression in HepG2. 2. 15. As a general inhibitor, KNK437 suppressed transcription of hsp70, hsp90b, and hsp4o. These data suggest that KNK437 may be a potent anti-HBV inhibitor for future therapy against chronic hepatitis.


Asunto(s)
Antivirales/farmacología , Compuestos de Bencidrilo/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Hepatitis B/virología , Pirrolidinonas/farmacología , Transcripción Reversa/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Regulación Viral de la Expresión Génica , Hepatitis B/tratamiento farmacológico , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Antígenos e de la Hepatitis B/genética , Antígenos e de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Humanos , ARN Viral/genética , Transcripción Genética
17.
Virol Sin ; 31(6): 480-489, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27900558

RESUMEN

The actin nucleator actin-related protein complex (Arp2/3) is composed of seven subunits: Arp2, Arp3, p40/ARPC1 (P40), p34/ARPC2 (P34), p21/ARPC3 (P21), p20/ARPC4 (P20), and p16/ARPC5 (P16). Arp2/3 plays crucial roles in a variety of cellular activities through regulation of actin polymerization. Autographa californica multiple nucleopolyhedrovirus (AcMNPV), one of the beststudied alphabaculoviruses, induces Arp2/3 nuclear relocation and mediates nuclear actin polymerization to assist in virus replication. We have demonstrated that Ac34, a viral late-gene product, induces translocation of the P40 subunit of Arp2/3 to the nucleus during AcMNPV infection. However, it remains unknown whether Ac34 could relocate other Arp2/3 subunits to the nucleus. In this study, the effects of the viral protein Ac34 on the distribution of these subunits were studied by an immunofluorescence assay. Arp2, P34, P21, and P20 cloned from Spodoptera frugiperda (Sf9) cells showed mainly cytoplasmic localization and were relocated to the nucleus in the presence of Ac34. In addition, Arp3 was localized in the cytoplasm in both the presence and absence of Ac34, and P16 showed whole-cell localization. In contrast to Sf9 cells, all subunits of mammalian Arp2/3 showed no nuclear relocation in the presence of Ac34. Co-immunoprecipitation analysis of the interaction between Ac34 and Arp2/3 subunits revealed that Ac34 bound to P40, P34, and P20 of Sf9 cells. However, none of the subunits of mammalian Arp2/3 interacted with Ac34, indicating that protein-protein interaction is essential for Ac34 to relocate Arp2/3 subunits to the nucleus.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteínas Virales/metabolismo , Proteína 2 Relacionada con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/genética , Animales , Secuencia de Bases , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA