Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Small ; : e2405528, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240075

RESUMEN

Cu2ZnSnS4 (CZTS) is strong candidate for hole transport in perovskite light emitting diodes (PeLEDs) due to their cost-effectiveness, deep highest occupied molecular orbital (HOMO), and high hole mobility. However, its inherent polymetallic ions usually deteriorate the quality of the perovskite emission layer (EML) affecting device performance. In this study, a bidirectional anchoring strategy is proposed by adding 15-crown-5 ether (15C5) into CZTS hole transport layer (HTL) to suppress the reaction between HTL and EML. The 15C5 molecule interacts with Cu+, Zn2+ and Sn2+ cations forming host-guest complexes to impede their migration, which is elucidated by density functional theory calculations. Additionally, 15C5 can neutralize lead (Pb) defects by the abundant oxygen (O) and high electronegative cavities to reduce the nonradiative recombination of FAPbBr3 film. This bidirectional anchoring strategy effectively improves hole charge transport efficiency and suppresses nonradiative recombination at the HTL/EML interface. As a result, the optimized PeLEDs present a 3.5 times peak external quantum efficiency (EQE) from 3.12% to 11.08% and the maximum luminance (Lmax) increased from 24495 to 50584 cd m-2. These findings offer innovative insights into addressing the metal ion migration issue commonly observed in inorganic HTLs.

2.
Mol Cell Biochem ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466468

RESUMEN

Glioblastoma multiforme (GBM) is the highest grade of glioma. Tumours, including GBM, possess reprogrammed metabolism, such as altered aerobic glycolysis and aberrant energy production. Lycorine hydrochloride (LH) was extracted from the bulb of Lycoris radiata. The previous study indicated that LH exerts antiviral, anti-inflammatory and antitumour effects. However, the effect of LH on GBM and the underlying molecular mechanism remain unclear. Our study revealed that LH restrained chemoresistant GBM cells growth by inhibiting PDK3 expression in vitro and in vivo. Functionally, LH inhibited the proliferation and invasive capacity of chemoresistant GBM cells in dose-dependent manner. Metabolomics and cellular energy analyses showed that LH decreased extracellular acidification rates while increased oxidative respiration and ROS levels. Mechanistically, LH inhibits the growth of GBM chemoresistant cells by regulating the expression of apoptosis-related proteins, while overexpression of of PDK3 can reverse the antitumor effect of LH. In conclusion, our study revealed that LH could reprogramme cell energy metabolism, including aerobic glycolysis suppression and oxidative phosphorylation hyperactivation by inhibiting PDK3. PDK3 may be a candidate therapeutic target for chemoresistant GBM treatment with LH.

3.
Mol Neurobiol ; 61(9): 6556-6571, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38324181

RESUMEN

Exosomes play a crucial role in regulating crosstalk between tumor and tumor stem-like cells through their cargo molecules. Circular RNAs (circRNAs) have recently been demonstrated to be critical factors in tumorigenesis. This study focuses on the molecular mechanism by which circRNAs from glioma stem-like cell (GSLC) exosomes regulate glioblastoma (GBM) tumorigenicity. In this study, we validated that GSLC exosomes accelerated the malignant phenotype of GBM. Subsequently, we found that circZNF800 was highly expressed in GSLC exosomes and was negatively associated with GBM patients. CircZNF800 promoted GBM cell proliferation and migration and inhibited GBM cell apoptosis in vitro. Silencing circZNF800 could improve the GBM xenograft model survival rate. Mechanistic studies revealed that circZNF800 activated the PIEZO1/Akt signaling pathway by sponging miR-139-5p. CircZNF800 derived from GSLC exosomes promoted GBM cell tumorigenicity and predicted poor prognosis in GBM patients. CircZNF800 has the potential to serve as a promising target for further therapeutic exploration.


Asunto(s)
Neoplasias Encefálicas , Carcinogénesis , Proliferación Celular , Exosomas , Glioblastoma , Canales Iónicos , Ratones Desnudos , Células Madre Neoplásicas , Proteínas Proto-Oncogénicas c-akt , ARN Circular , Animales , Femenino , Humanos , Ratones , Apoptosis , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Carcinogénesis/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Movimiento Celular , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Canales Iónicos/metabolismo , Canales Iónicos/genética , Ratones Endogámicos BALB C , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Transducción de Señal
4.
iScience ; 26(10): 107897, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37766977

RESUMEN

Glioma, an aggressively growing and highly malignant brain tumor, poses substantial therapeutic challenges due to its resistance to radiotherapy and chemotherapy. Recent research has identified circRNAs as pivotal players in glioma formation and development. However, the roles of circRNA in the metabolic and immune regulation of glioma are unclear. In this study, circSOBP expression was significantly downregulated in glioma cells and specimens. Functionally, enhanced circSOBP expression mitigated cell proliferation, invasion, migration, and glycolysis in gliomas. Mechanistically, circSOBP inhibited glycolysis and activated the MDA5-mediated IKKε/TBK1/IRF3 signaling pathway by binding TKFC proteins. Furthermore, the elevated levels of IFN-I induced by the MDA5 pathway increased the number and activity of CD8+ T and NK cells in the immune response of the animal models. In summary, our findings have emphasized the critical role of circSOBP in binding and modulating TKFC protein, offering potential therapeutic avenue for targeting glioma metabolism and immunological reprogramming.

5.
Cell Death Dis ; 14(7): 443, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460467

RESUMEN

Glioblastoma (GBM) is the most common malignant primary brain cancer in adults and has constantly been a focus of research. Long noncoding RNAs (lncRNAs) play important roles in the development of cancers. To illustrate the role of lncRNAs in the development of glioblastoma, high-throughput RNA sequencing was performed to obtain the transcripts using three freshly isolated tumor tissue samples from GBM patients and three normal brain tissue samples from the traumatic brain of patients. Then, a lncRNA, MGCG (MGC70870 is expressed at a high level in glioblastoma), which has not been reported previously in GBM, was found to be associated with the prognosis of patients. The results of bioinformatic analysis showed that MGCG was correlated with autophagy and positively correlated with the expression of the autophagy-related gene ATG2A. The data of mass spectrometry demonstrated that the hnRNPK protein was a direct target interacting with MGCG, and MGCG/hnRNPK promoted the development of GBM by enhancing the translation of ATG2A and autophagy. In conclusion, the present study showed that MGCG has the potential to promote the development of GBM and may become a candidate for molecular diagnostics and treatment of tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , ARN Largo no Codificante , Adulto , Humanos , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
6.
Cell Death Dis ; 13(8): 725, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986010

RESUMEN

Tumor-associated exosomes play essential roles in intercellular communication and the foundation of cancer microenvironment in glioma. Many mRNAs, microRNAs (miRNAs) and proteins contained in tumor-associated exosomes can be transferred to recipient cells and contribute to the progression of tumor. Nevertheless, the cellular communication between malignant cells with different heterogeneities or characteristics and resultant tumor progression are still unclear in glioma. Here, we show that exosomes released from glioma stem-like cells (GSCs) contain a significant increasing level of miR-155-5p and could be horizontally transferred to surrounding glioma cells. High expression of miR-155-5p in plasma exosomes from patients was associated with glioma diagnosis and grading. Mechanically, we found that miR-155-5p markedly reduced the expression of acetyl-CoA thioesterase 12 (ACOT12), which played as a tumor suppressor in glioma. Furthermore, mesenchymal transition was significantly promoted in glioma cells treated with GSCs-derived exosomes. In conclusion, GSCs-derived exosomal miR-155-5p play a critical role in glioma progression and facilitating tumor aggressive growth by targeting ACOT12 and promoting mesenchymal transition. Exosomal miR-155-5p is also a potential predictive biomarker for glioma, which may provoke the development of novel diagnostic and therapeutic strategies against glioma.


Asunto(s)
Exosomas , Glioma , MicroARNs , Acetilcoenzima A/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Tioléster Hidrolasas/metabolismo , Microambiente Tumoral
7.
Oncogene ; 39(45): 6879-6892, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32978519

RESUMEN

Glioma is the most common malignant tumor in the central nervous system. Altered long noncoding RNAs (lncRNAs) are playing regulatory roles in physiological and pathogenic processes in cancer. Here, we uncovered a differentially expressed lncRNA called brain cytoplasmic RNA 1 (BCYRN1), and elucidated its function and molecular mechanism in the progression and development of glioma. Three fresh tumor tissues from glioma patients and three normal brain tissues from craniocerebral trauma patients were prepared for high-throughput RNA sequencing. Differential RNA transcripts and BCYRN1 were identified by RT-qPCR in glioma samples and controls. CCK-8, colony formation assays, flow cytometry, TUNEL assays, cell migration assays, wound-healing assays, and xenograft model were established to investigate the biological function of BCYRN1 both in vitro and in vivo. Various bioinformatics analysis, dual-luciferase reporter assays, biotinylated RNA pulldown assays, and rescue experiments were conducted to reveal the underlying mechanisms of competitive endogenous RNAs (ceRNAs). 183 lncRNAs were identified with significant dysregulation in glioma and randomly selected differential RNAs were further confirmed by RT-qPCR. Among them, BCYRN1 was the most downregulated lncRNA, and its low expression positively correlated with glioma progression. Functionally, BCYRN1 overexpression inhibited cell proliferation, migration in glioma cell lines, whereas BCYRN1 depletion resulted in the opposite way. MiR-619-5p was further confirmed as the direct target of BCYRN1. Mechanistically, miR-619-5p specifically targeted the CUE domain containing protein 2 (CUEDC2), and BCYRN1/miR-619-5p suppressed glioma tumorigenesis by inactivating PTEN/AKT/p21 pathway in a CUEDC2-dependent manner. Overall, our data presented that the reduced expression of BCYRN1 was associated with poor patient outcome in glioma. BCYRN1 functioned as a ceRNA to inhibit glioma progression by sponging miR-619-5p to regulate CUEDC2 expression and PTEN/AKT/p21 pathway. Our results indicated that BCYRN1 exerted tumor suppressor potential and might be a candidate in the diagnosis and treatment of glioma.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias Encefálicas/genética , Glioma/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Adulto , Animales , Encéfalo/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioma/mortalidad , Glioma/patología , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Fosfohidrolasa PTEN/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Exp Clin Cancer Res ; 39(1): 196, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32962742

RESUMEN

BACKGROUND: Glioblastoma is the most common primary malignant intracranial tumor with poor clinical prognosis in adults. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) function as important regulators in cancer progression, including glioblastoma. Here, we identified a new lncRNA LPP antisense RNA-2 (LPP-AS2) and investigated its function and mechanism in the development of glioma. METHODS: High-throughput RNA sequencing was performed to discriminate differentially expressed lncRNAs and mRNAs between glioma tissues and normal brain tissues. Expression of LPP-AS2, epidermal growth factor receptor (EGFR) and miR-7-5p in glioma tissues and cell lines was detected by real-time quantitative PCR (RT-qPCR), and the functions of lncRNA LPP-AS2 in glioma were assessed by in vivo and in vitro assays. Insight into the underlying mechanism of competitive endogenous RNAs (ceRNAs) was obtained via bioinformatic analysis, dual luciferase reporter assays, RNA pulldown assays, RNA immunoprecipitation (RIP) and rescue experiments. RESULTS: The results of high-throughput RNA-seq indicated lncRNA LPP-AS2 was upregulated in glioma tissues and further confirmed by RT-qPCR. Higher LPP-AS2 expression was related to a poor prognosis in glioma patients. Based on functional studies, LPP-AS2 depletion inhibited glioma cell proliferation, invasion and promoted apoptosis in vitro and restrained tumor growth in vivo, overexpression of LPP-AS2 resulted in the opposite effects. In addition, LPP-AS2 and EGFR were observed in co-expression networks. LPP-AS2 was found to function as a ceRNA to regulate EGFR expression by sponging miR-7-5p in glioma cells. The result of chromatin immunoprecipitation (ChIP) assays validated that c-MYC binds directly to the promoter region of LPP-AS2. As a downstream protein of EGFR, c-MYC was modulated by LPP-AS2 and in turn enhanced LPP-AS2 expression. Thus, lncRNA LPP-AS2 promoted glioma tumorigenesis via a miR-7-5p/EGFR/PI3K/AKT/c-MYC feedback loop. CONCLUSIONS: Our study elucidated that LPP-AS2 acted as an oncogene through a novel molecular pathway in glioma and might be a potential therapeutic approach for glioma diagnosis, therapy and prognosis.


Asunto(s)
Glioblastoma/genética , MicroARNs/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/genética , Adulto , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Receptores ErbB/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasas/genética , Pronóstico , Proteínas Proto-Oncogénicas c-akt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA