Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569324

RESUMEN

Sperm sexing is a technology that can generate great economic benefits in the animal production sector. Techniques such as sex-sorting promise over 90% accuracy in sperm sexing. However, for the correct standardization of the technique, some laboratory methodologies are required. The present manuscript describes in detail a standardized equine sperm sex-sorting protocol using an absolute qPCR-based methodology. Furthermore, the results of absolute qPCR were implemented and validated by generating equine/bovine heterologous embryos by intracytoplasmic sperm injection (ICSI) of presumably sexed equine spermatozoa into bovine oocytes using a piezoelectric system (Piezo-ICSI). Our results indicated that equine sex-sorting spermatozoa had a 97% and 94% certainty for X and Y sperm, respectively, while presumptive female and male equine/bovine hybrid embryos, generated by Piezo-ICSI, had an accuracy of 92% with respect to the desired sex. Therefore, it is concluded that the presented methodology is a reliable, cost-effective, and relatively simple option for standardizing sex-sorting of equine spermatozoa. This is supported by the results of the correct sexing of Piezo-ICSI heterologous embryos generated with the sexed spermatozoa, validating the correct sexing and viability of these gametes.


Asunto(s)
Semen , Espermatozoides , Caballos , Masculino , Animales , Bovinos , Femenino , Oocitos , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Inyecciones de Esperma Intracitoplasmáticas/métodos , Estándares de Referencia
2.
Zygote ; 30(6): 749-767, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36082429

RESUMEN

Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique mainly used to overcome severe infertility problems associated with the male factor, but in cattle its efficiency is far from optimal. Artificial activation treatments combining ionomycin (Io) with 6-dimethylaminopurine after piezo-ICSI or anisomycin after conventional ICSI have recently increased the blastocyst rate obtained. Compounds to capacitate bovine spermatozoa, such as heparin and methyl-ß-cyclodextrin and compounds to destabilize sperm membranes such as NaOH, lysolecithin and Triton X-100, have been assessed, although they have failed to substantially improve post-ICSI embryonic development. Disulfide bond reducing agents, such as dithiothreitol (DTT), dithiobutylamine and reduced glutathione, have been assessed to decondense the hypercondensed head of bovine spermatozoa, the two latter being more efficient than DTT and less harmful. Although piezo-directed ICSI without external activation has generated high fertilization rates and modest rates of early embryo development, other studies have required exogenous activation to improve the results. This manuscript thoroughly reviews the different strategies used in bovine ICSI to improve its efficiency and proposes some alternative approaches, such as the use of extracellular vesicles (EVs) as 'biological methods of oocyte activation' or the incorporation of EVs in the in vitro maturation and/or culture medium as antioxidant defence agents to improve the competence of the ooplasm, as well as a preincubation of the spermatozoa in estrous oviductal fluid to induce physiological capacitation and acrosome reaction before ICSI, and the use of hyaluronate in the sperm immobilization medium.


Asunto(s)
Semen , Inyecciones de Esperma Intracitoplasmáticas , Embarazo , Femenino , Bovinos , Masculino , Animales , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Inyecciones de Esperma Intracitoplasmáticas/métodos , Espermatozoides/fisiología , Reacción Acrosómica , Oocitos/fisiología , Ditiotreitol/farmacología
3.
Zygote ; 30(4): 440-463, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35652626

RESUMEN

Over the last decades, extracellular vesicles (EVs) have been found to be implicated in a complex universal mechanism of communication between different cell types. EVs are nanostructures of lipid nature that have an exosomal or ectosomal biogenesis, responsible for the intercellular transport of proteins, lipids, carbohydrates, nucleic acids, ions, among other molecules. The content of EVs can vary due to various factors such as hormonal stimuli, non-physiological conditions, metabolic state, etc. Once EVs reach their target cell, they can modulate processes such as gene expression, metabolism, response to external factors, and can even be associated with the delivery of molecules involved in epigenetic inheritance processes in germ cells. In mammalian reproduction, EVs have been shown to play an important role, either in vivo or in vitro, modulating a variety of processes in sperm, oocytes and embryos, and in their respective environments. Moreover, EVs represent a biodegradable, harmless and specific vehicle, which makes them attractive allies to consider when improving assisted reproductive technologies (ARTs). Therefore, the present review aims to describe the content of the main EVs involved in mammalian reproduction and how they can vary due to different factors, as well as to detail how EVs modulate, directly or indirectly, different molecular processes in gametes and embryos. In addition, we will highlight the mechanisms that remain to be elucidated. We will also propose new perspectives according to the characteristics of each particular EV to improve the different ARTs.


Asunto(s)
Vesículas Extracelulares , Semen , Animales , Vesículas Extracelulares/metabolismo , Masculino , Mamíferos , Oocitos/fisiología , Reproducción , Espermatozoides
4.
Artículo en Inglés | MEDLINE | ID: mdl-38019089

RESUMEN

Significance: In recent decades, male fertility has been severely reduced worldwide. The causes underlying this decline are multifactorial, and include, among others, genetic alterations, changes in the microbiome, and the impact of environmental pollutants. Such factors can dysregulate the physiological levels of reactive species of oxygen (ROS) and nitrogen (RNS) in the patient, generating oxidative and nitrosative stress that impairs fertility. Recent Advances: Recent studies have delved into other factors involved in the dysregulation of ROS and RNS levels, such as diet, obesity, persistent infections, environmental pollutants, and gut microbiota, thus leading to new strategies to solve male fertility problems, such as consuming prebiotics to regulate gut flora or treating psychological conditions. Critical Issues: The pathways where ROS or RNS may be involved as modulators are still under investigation. Moreover, the extent to which treatments can rescue male infertility as well as whether they may have side effects remains, in most cases, to be elucidated. For example, it is known that prescription of antioxidants to treat nitrosative stress can alter sperm chromatin condensation, which makes DNA more exposed to ROS and RNS, and may thus affect fertilization and early embryo development. Future Directions: The involvement of extracellular vesicles, which might play a crucial role in cell communication during spermatogenesis and epididymal maturation, and the relevance of other factors such as sperm epigenetic signatures should be envisaged in the future.

5.
J Equine Vet Sci ; 126: 104499, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37105416

RESUMEN

Cryopreservation of stallion semen does not achieve the post-thaw quality or fertility results observed in other species like cattle. There are many reasons for this, but the membrane composition and intracellular changes in stallion sperm predispose them to low resistance to the cooling, freezing, and subsequent thawing process. Damage to the sperm results from different processes activated during cryopreservation, including oxidative stress, apoptosis, and structural modifications in the sperm membrane that increase the deleterious effect on sperm. In addition, significant individual variability is observed among stallions in the ability of sperm to survive the freeze-thaw process. Recent advances in genomics, transcriptomics, proteomics, metabolomics, and epigenetics are making it possible to advance our understanding of the cellular and molecular processes involved in the cryopreservation process, opening new possibilities for improvement. This review addresses the ongoing research on stallion semen cryopreservation, focusing on the cellular and molecular consequences of this procedure in stallions and discusses the new tools currently available to increase the tolerance of equine spermatozoa to freeze-thaw.


Asunto(s)
Preservación de Semen , Semen , Caballos , Animales , Masculino , Bovinos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Espermatozoides , Criopreservación/veterinaria , Criopreservación/métodos , Congelación
6.
Biomolecules ; 12(6)2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35740930

RESUMEN

This study aimed to analyze the effects on the lipidome of juvenile Oncorhynchus mykiss muscle fed 90% Brassica napus "rapeseed" oil and different amounts of Durvillaea antarctica "Cochayuyo" meal (1.5, 3 and 6%) as a replacement for cellulose. The analysis allowed for the identification of 329 lipids, mainly represented by phospholipids and fatty esters. The inclusion of Brassica napus oil significantly increased the levels of C18:2 species and fatty esters of hydroxylated fatty acids, which could play a bioactive role in human health. One of the most abundant lipids in all fillets was Phosphatidylcholine 33:6, which, according to the literature, could be considered a biomarker for the identification of Oncorhynchus mykiss. In all experimental diets, the species Phosphatidylethanolamine 15:1-18:24 showed four-fold higher levels than the control; increments of n-3- and n-6-rich phospholipids were also observed. Diets containing Durvillaea antarctica meal did not generate more significant variation in fish muscle phospholipids relative to the muscle of the rapeseed-oil-only group. These lipid species consist of medium- and long-chain fatty acids with different degrees of unsaturation. Still, it appears that the rapeseed oil masks the lipid contribution of the meal, possibly due to the low levels of total lipids in the macroalgae.


Asunto(s)
Oncorhynchus mykiss , Animales , Ésteres , Ácidos Grasos , Lipidómica , Músculos , Fosfolípidos , Aceite de Brassica napus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA