Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238647

RESUMEN

Protein trafficking is altered when normal cells acquire a tumor phenotype. A key subcellular compartment in regulating protein trafficking is the Golgi apparatus, but its role in carcinogenesis is still not well defined. Golgi phosphoprotein 3 (GOLPH3), a peripheral membrane protein mostly localized at the trans-Golgi network, is overexpressed in several tumor types including glioblastoma multiforme (GBM), the most lethal primary brain tumor. Moreover, GOLPH3 is currently considered an oncoprotein, however its precise function in GBM is not fully understood. Here, we analyzed in T98G cells of GBM, which express high levels of epidermal growth factor receptor (EGFR), the effect of stable RNAi-mediated knockdown of GOLPH3. We found that silencing GOLPH3 caused a significant reduction in the proliferation of T98G cells and an unexpected increase in total EGFR levels, even at the cell surface, which was however less prone to ligand-induced autophosphorylation. Furthermore, silencing GOLPH3 decreased EGFR sialylation and fucosylation, which correlated with delayed ligand-induced EGFR downregulation and its accumulation at endo-lysosomal compartments. Finally, we found that EGF failed at promoting EGFR ubiquitylation when the levels of GOLPH3 were reduced. Altogether, our results show that GOLPH3 in T98G cells regulates the endocytic trafficking and activation of EGFR likely by affecting its extent of glycosylation and ubiquitylation.


Asunto(s)
Carcinogénesis/genética , Glioblastoma/genética , Proteínas de la Membrana/genética , Línea Celular Tumoral , Proliferación Celular/genética , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/patología , Glicosilación , Aparato de Golgi/genética , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Transporte de Proteínas/genética , Ubiquitinación/genética , Red trans-Golgi/genética
2.
FASEB J ; 31(6): 2446-2459, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28254759

RESUMEN

Brain regions affected by Alzheimer disease (AD) display well-recognized early neuropathologic features in the endolysosomal and autophagy systems of neurons, including enlargement of endosomal compartments, progressive accumulation of autophagic vacuoles, and lysosomal dysfunction. Although the primary causes of these disturbances are still under investigation, a growing body of evidence suggests that the amyloid precursor protein (APP) intracellular C-terminal fragment ß (C99), generated by cleavage of APP by ß-site APP cleaving enzyme 1 (BACE-1), is the primary cause of the endosome enlargement in AD and the earliest initiator of synaptic plasticity and long-term memory impairment. The aim of the present study was to evaluate the possible relationship between the endolysosomal degradation pathway and autophagy on the proteolytic processing and turnover of C99. We found that pharmacologic treatments that either inhibit autophagosome formation or block the fusion of autophagosomes to endolysosomal compartments caused an increase in C99 levels. We also found that inhibition of autophagosome formation by depletion of Atg5 led to higher levels of C99 and to its massive accumulation in the lumen of enlarged perinuclear, lysosomal-associated membrane protein 1 (LAMP1)-positive organelles. In contrast, activation of autophagosome formation, either by starvation or by inhibition of the mammalian target of rapamycin, enhanced lysosomal clearance of C99. Altogether, our results indicate that autophagosomes are key organelles to help avoid C99 accumulation preventing its deleterious effects.-González, A. E., Muñoz, V. C., Cavieres, V. A., Bustamante, H. A., Cornejo, V.-H., Januário, Y. C., González, I., Hetz, C., daSilva, L. L., Rojas-Fernández, A., Hay, R. T., Mardones, G. A., Burgos, P. V. Autophagosomes cooperate in the degradation of intracellular C-terminal fragments of the amyloid precursor protein via the MVB/lysosomal pathway.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Autofagosomas/fisiología , Lisosomas/fisiología , Cuerpos Multivesiculares/fisiología , Precursor de Proteína beta-Amiloide/genética , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación de la Expresión Génica/fisiología , Silenciador del Gen , Humanos , Naftiridinas/farmacología , Neuroglía , ARN Interferente Pequeño , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Biochem Biophys Res Commun ; 441(4): 923-8, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24216105

RESUMEN

Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.


Asunto(s)
Arginina Vasopresina/farmacología , Glucosa/metabolismo , Hiperglucemia/enzimología , Complejos Multiproteicos/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Cromonas/farmacología , Glucosa/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Morfolinas/farmacología , Miocitos del Músculo Liso/enzimología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Ratas
4.
PLoS One ; 10(8): e0136313, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26308941

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-ß (Aß) peptide. We have previously shown that the compound tetrahydrohyperforin (IDN5706) prevents accumulation of Aß species in an in vivo model of AD, however the mechanism that explains this reduction is not well understood. We show herein that IDN5706 decreases the levels of ER degradation enhancer, mannosidase alpha-like 1 (EDEM1), a key chaperone related to endoplasmic-reticulum-associated degradation (ERAD). Moreover, we observed that low levels of EDEM1 correlated with a strong activation of autophagy, suggesting a crosstalk between these two pathways. We observed that IDN5706 perturbs the glycosylation and proteolytic processing of the amyloid precursor protein (APP), resulting in the accumulation of immature APP (iAPP) in the endoplasmic reticulum. To investigate the contribution of autophagy, we tested the effect of IDN5706 in Atg5-depleted cells. We found that depletion of Atg5 enhanced the accumulation of iAPP in response to IDN5706 by slowing down its degradation. Our findings reveal that IDN5706 promotes degradation of iAPP via the activation of Atg5-dependent autophagy, shedding light on the mechanism that may contribute to the reduction of Aß production in vivo.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Autofagia/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Floroglucinol/análogos & derivados , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteolisis/efectos de los fármacos , Terpenos/farmacología , Precursor de Proteína beta-Amiloide/genética , Animales , Proteína 5 Relacionada con la Autofagia , Western Blotting , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Glicosilación/efectos de los fármacos , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Floroglucinol/farmacología , ARN Mensajero/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
5.
PLoS One ; 8(12): e83096, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376644

RESUMEN

Alzheimer's disease (AD) is characterized by the buildup of amyloid-ß peptides (Aß) aggregates derived from proteolytic processing of the ß-amyloid precursor protein (APP). Amyloidogenic cleavage of APP by ß-secretase/BACE1 generates the C-terminal fragment C99/CTFß that can be subsequently cleaved by γ-secretase to produce Aß. Growing evidence indicates that high levels of C99/CTFß are determinant for AD. Although it has been postulated that γ-secretase-independent pathways must control C99/CTFß levels, the contribution of organelles with degradative functions, such as the endoplasmic reticulum (ER) or lysosomes, is unclear. In this report, we investigated the turnover and amyloidogenic processing of C99/CTFß in human H4 neuroglioma cells, and found that C99/CTFß is localized at the Golgi apparatus in contrast to APP, which is mostly found in endosomes. Conditions that localized C99/CTFß to the ER resulted in its degradation in a proteasome-dependent manner that first required polyubiquitination, consistent with an active role of the ER associated degradation (ERAD) in this process. Furthermore, when proteasomal activity was inhibited C99/CTFß was degraded in a chloroquine (CQ)-sensitive compartment, implicating lysosomes as alternative sites for its degradation. Our results highlight a crosstalk between degradation pathways within the ER and lysosomes to avoid protein accumulation and toxicity.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteolisis/efectos de los fármacos , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Línea Celular Tumoral , Cloroquina/farmacología , Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/genética , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Transducción de Señal , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA