Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 519(7541): 106-9, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25533957

RESUMEN

Intrinsically disordered proteins play important roles in cell signalling, transcription, translation and cell cycle regulation. Although they lack stable tertiary structure, many intrinsically disordered proteins undergo disorder-to-order transitions upon binding to partners. Similarly, several folded proteins use regulated order-to-disorder transitions to mediate biological function. In principle, the function of intrinsically disordered proteins may be controlled by post-translational modifications that lead to structural changes such as folding, although this has not been observed. Here we show that multisite phosphorylation induces folding of the intrinsically disordered 4E-BP2, the major neural isoform of the family of three mammalian proteins that bind eIF4E and suppress cap-dependent translation initiation. In its non-phosphorylated state, 4E-BP2 interacts tightly with eIF4E using both a canonical YXXXXLΦ motif (starting at Y54) that undergoes a disorder-to-helix transition upon binding and a dynamic secondary binding site. We demonstrate that phosphorylation at T37 and T46 induces folding of residues P18-R62 of 4E-BP2 into a four-stranded ß-domain that sequesters the helical YXXXXLΦ motif into a partly buried ß-strand, blocking its accessibility to eIF4E. The folded state of pT37pT46 4E-BP2 is weakly stable, decreasing affinity by 100-fold and leading to an order-to-disorder transition upon binding to eIF4E, whereas fully phosphorylated 4E-BP2 is more stable, decreasing affinity by a factor of approximately 4,000. These results highlight stabilization of a phosphorylation-induced fold as the essential mechanism for phospho-regulation of the 4E-BP:eIF4E interaction and exemplify a new mode of biological regulation mediated by intrinsically disordered proteins.


Asunto(s)
Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Pliegue de Proteína , Sitios de Unión , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 110(47): E4427-36, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24191035

RESUMEN

Intrinsically disordered proteins play crucial roles in regulatory processes and often function as protein interaction hubs. Here, we present a detailed characterization of a full-length disordered hub protein region involved in multiple dynamic complexes. We performed NMR, CD, and fluorescence binding studies on the nonphosphorylated and highly PKA-phosphorylated human cystic fibrosis transmembrane conductance regulator (CFTR) regulatory region, a ∼200-residue disordered segment involved in phosphorylation-dependent regulation of channel trafficking and gating. Our data provide evidence for dynamic, phosphorylation-dependent, multisite interactions of various segments of the regulatory region for its intra- and intermolecular partners, including the CFTR nucleotide binding domains 1 and 2, a 42-residue peptide from the C terminus of CFTR, the SLC26A3 sulphate transporter and antisigma factor antagonist (STAS) domain, and 14-3-3ß. Because of its large number of binding partners, multivalent binding of individually weak sites facilitates rapid exchange between free and bound states to allow the regulatory region to engage with different partners and generate a graded or rheostat-like response to phosphorylation. Our results enrich the understanding of how disordered binding segments interact with multiple targets. We present structural models consistent with our data that illustrate this dynamic aspect of phospho-regulation of CFTR by the disordered regulatory region.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Moleculares , Conformación Proteica , Mapas de Interacción de Proteínas/fisiología , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Proteínas 14-3-3/metabolismo , Biofisica , Antiportadores de Cloruro-Bicarbonato/metabolismo , Dicroismo Circular , Fluorescencia , Humanos , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Unión Proteica , Pliegue de Proteína , Mapas de Interacción de Proteínas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transportadores de Sulfato
3.
J Mol Biol ; 372(4): 992-1008, 2007 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-17692336

RESUMEN

Sac7d and Sso7d are homologous, hyperthermophile proteins with a high density of charged surface residues and potential ion pairs. To determine the relative importance of specific amino acid side-chains in defining the stability and function of these Archaeal chromatin proteins, pK(a) values were measured for the acidic residues in both proteins using (13)C NMR chemical shifts. The stability of Sso7d enabled titrations to pH 1 under low-salt conditions. Two aspartate residues in Sso7d (D16 and D35) and a single glutamate residue (G54) showed significantly perturbed pK(a) values in low salt, indicating that the observed pH-dependence of stability was primarily due to these three residues. The pH-dependence of backbone amide NMR resonances demonstrated that perturbation of all three pK(a) values was primarily the result of side-chain to backbone amide hydrogen bonds. Few of the significantly perturbed acidic pK(a) values in Sac7d and Sso7d could be attributed to primarily ion pair or electrostatic interactions. A smaller perturbation of E48 (E47 in Sac7d) was ascribed to an ion pair interaction that may be important in defining the DNA binding surface. The small number (three) of significantly altered pK(a) values was in good agreement with a linkage analysis of the temperature, pH, and salt-dependence of folding. The linkage of the ionization of two or more side-chains to protein folding led to apparent cooperativity in the pH-dependence of folding, although each group titrated independently with a Hill coefficient near unity. These results demonstrate that the acid pH-dependence of protein stability in these hyperthermophile proteins is due to independent titration of acidic residues with pK(a) values perturbed primarily by hydrogen bonding of the side-chain to the backbone. This work demonstrates the need for caution in using structural data alone to argue the importance of ion pairs in stabilizing hyperthermophile proteins.


Asunto(s)
Proteínas Arqueales/química , Proteínas de Unión al ADN/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Iones/química , Pliegue de Proteína , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Desnaturalización Proteica , Estructura Terciaria de Proteína , Sales (Química)/química , Alineación de Secuencia , Sulfolobus/química , Sulfolobus/genética
4.
Sci Rep ; 7(1): 882, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28408762

RESUMEN

Misofolding of mammalian prion proteins (PrP) is believed to be the cause of a group of rare and fatal neurodegenerative diseases. Despite intense scrutiny however, the mechanism of the misfolding reaction remains unclear. We perform nuclear Magnetic Resonance and thermodynamic stability measurements on the C-terminal domains (residues 90-231) of two PrP variants exhibiting different pH-induced susceptibilities to aggregation: the susceptible hamster prion (GHaPrP) and its less susceptible rabbit homolog (RaPrP). The pKa of histidines in these domains are determined from titration experiments, and proton-exchange rates are measured at pH 5 and pH 7. A single buried highly conserved histidine, H187/H186 in GHaPrP/RaPrP, exhibited a markedly down shifted pKa ~5 for both proteins. However, noticeably larger pH-induced shifts in exchange rates occur for GHaPrP versus RaPrP. Analysis of the data indicates that protonation of the buried histidine destabilizes both PrP variants, but produces a more drastic effect in the less stable GHaPrP. This interpretation is supported by urea denaturation experiments performed on both PrP variants at neutral and low pH, and correlates with the difference in disease susceptibility of the two species, as expected from the documented linkage between destabilization of the folded state and formation of misfolded and aggregated species.


Asunto(s)
Histidina/química , Proteínas Priónicas/química , Animales , Cricetinae , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Protones , Conejos , Termodinámica
5.
J Mol Biol ; 351(1): 182-94, 2005 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-15992821

RESUMEN

The N terminus of the c-Myc oncoprotein interacts with Bin1, a ubiquitously expressed nucleocytoplasmic protein with features of a tumor suppressor. The c-Myc/Bin1 interaction is dependent on the highly conserved Myc Box 1 (MB1) sequence of c-Myc. The c-Myc/Bin1 interaction has potential regulatory significance as c-Myc-mediated transformation and apoptosis can be modulated by the expression of Bin1. Multiple splicing of the Bin1 transcript results in ubiquitous, tissue-specific and tumor-specific populations of Bin1 proteins in vivo. We report on the structural features of the interaction between c-Myc and Bin1, and describe two mechanisms by which the binding of different Bin1 isoforms to c-Myc may be regulated in cells. Our findings identify a consensus class II SH3-binding motif in c-Myc and the C-terminal SH3 domain of Bin1 as the primary structure determinants of their interaction. We present biochemical and structural evidence that tumor-specific isoforms of Bin1 are precluded from interaction with c-Myc through an intramolecular polyproline-SH3 domain interaction that inhibits the Bin1 SH3 domain from binding to c-Myc. Furthermore, c-Myc/Bin1 interaction can be inhibited by phosphorylation of c-Myc at Ser62, a functionally important residue found within the c-Myc SH3-binding motif. Our data provide a structure-based model of the c-Myc/Bin1 interaction and suggest a mode of regulation that may be important for c-Myc function as a regulator of gene transcription.


Asunto(s)
Empalme Alternativo , Proteínas Portadoras/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Dominios Homologos src
6.
J Mol Biol ; 322(3): 605-20, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12225753

RESUMEN

X-linked lymphoproliferative disease is caused by mutations in the protein SAP, which consists almost entirely of a single SH2 domain. SAP interacts with the Tyr281 site of the T<-->B cell signaling protein SLAM via its SH2 domain. Interestingly, binding is not dependent on phosphorylation but does involve interactions with residues N-terminal to the Tyr. We have used 15N and 2H NMR relaxation experiments to investigate the motional properties of the SAP SH2 domain backbone amides and side-chain methyl groups in the free protein and complexes with phosphorylated and non-phosphorylated peptides derived from the Tyr281 site of SLAM. The most mobile methyl groups are in side-chains with large RMSD values between the three crystal structures of SAP, suggesting that fast time-scale dynamics in side-chains is associated with conformational plasticity. The backbone amides of two residues which interact with the C-terminal part of the peptides experience fast time-scale motions in the free SH2 domain that are quenched upon binding of either the phosphorylated or non-phosphorylated peptide. Of most importance, the mobility of methyl groups in and around the binding site for residues in the N-terminus of the peptide is significantly restricted in the complexes, underscoring the dominance of this interaction with SAP and demonstrating a correlation between changes in rapid side-chain motion upon binding with local binding energy.


Asunto(s)
Proteínas Portadoras/química , Péptidos y Proteínas de Señalización Intracelular , Fragmentos de Péptidos/química , Dominios Homologos src , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Humanos , Cinética , Ligandos , Mecánica , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/metabolismo , Fosfotirosina/metabolismo , Unión Proteica , Pliegue de Proteína , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria , Termodinámica , Tirosina/metabolismo
7.
Biochemistry ; 44(2): 694-703, 2005 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-15641795

RESUMEN

The signal transduction protein phospholipase C-gamma1 (PLC-gamma1) is activated when its C-terminal SH2 domain (PLCC) binds the phosphorylated Tyr-1021 site (pTyr-1021) in the beta-platelet-derived growth factor receptor (PDGFR). To better understand the contributions that dynamics make to binding, we have used NMR relaxation experiments to investigate the motional properties of backbone amide and side chain methyl groups in a peptide derived from the pTyr-1021 site of PDGFR, both free and in complex with the PLCC SH2 domain. The free peptide has relaxation properties that are typical for a small, unstructured polymer, while the backbone of the bound peptide is least flexible for residues in the central portion of the binding site with the amplitude of pico- to nanosecond time scale motions increasing toward the C-terminus of the peptide. The increase in large amplitude motion toward the end of the pY1021 peptide is consistent with the bound peptide existing as an ensemble of states with C-terminal residues having the broadest distribution of backbone conformations, while residues in the central binding site are the most restricted. Deuterium spin relaxation experiments establish that the protein-peptide interface is highly dynamic, and this mobility may play an important role in modulating the affinity of the interaction.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Termodinámica , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/metabolismo , Dominios Homologos src , Amidas/química , Becaplermina , Isótopos de Carbono/química , Deuterio/química , Ligandos , Nanotecnología , Isótopos de Nitrógeno/química , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Fosfolipasa C gamma , Fosfotirosina/genética , Fosfotirosina/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas c-sis , Factores de Tiempo
8.
J Am Chem Soc ; 124(34): 10025-35, 2002 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12188667

RESUMEN

A four-dimensional (4-D) NMR study of Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4 kDa), is described. Virtually complete backbone (1)HN, (15)N, (13)C, and (13)C(beta) chemical shift assignments of this largely alpha-helical protein are reported. The assignment strategy follows from our previously described approach based on TROSY triple resonance 4-D NMR spectroscopy [Yang, D.; Kay, L. E. J. Am. Chem. Soc. 1999, 121, 2571-2575. Konrat, R; Yang, D; Kay, L. E. J. Biomol. NMR 1999, 15, 309-313] with a number of modifications necessitated by the large size of the protein. A protocol for refolding deuterated MSG in vitro was developed to protonate the amides deeply buried in the protein core. Of interest, during the course of the assignment, an isoaspartyl linkage in the protein sequence was unambiguously identified. Chemical shift assignments of this system are a first step in the study of how the domains of the protein change in response to ligand binding and for characterizing the dynamical properties of the enzyme that are likely important for function.


Asunto(s)
Escherichia coli/enzimología , Malato Sintasa/química , Resonancia Magnética Nuclear Biomolecular/métodos , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA