Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Chem Phys ; 160(11)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511663

RESUMEN

Controlling product selectivity is essential for improving the efficiency of multi-product reactions. Electrochemical water oxidation is a reaction of main importance in different applications, e.g., renewable energy schemes and environmental protection, where H2O2 and O2 are the two principal products. In this Communication, the product selectivity of electrochemical water oxidation was controlled by making use of the chiral induced spin selectivity (CISS) effect at mesoporous-TiO2 on the molecule-modified Au substrate. Our results show a decrease in H2O2 formation when using chiral hetero-helicene molecules adsorbed on the Au substrate. We propose a mechanism for this kinetic effect based on the onset of CISS-induced spin polarization on the Au-helicene chiral interface. We also present a new tunable substrate to investigate the CISS mechanism.

2.
J Chem Phys ; 159(2)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37449581

RESUMEN

We address the electron-spin-phonon coupling in an effective model Hamiltonian for DNA to assess its role in spin transfer involved in the Chiral-Induced Spin Selectivity (CISS) effect. The envelope function approach is used to describe semiclassical electron transfer in a tight-binding model of DNA at half filling in the presence of intrinsic spin-orbit coupling. Spin-phonon coupling arises from the orbital-configuration dependence of the spin-orbit interaction. We find spin-phonon coupling only for the acoustic modes, while the optical modes exhibit electron-phonon interaction without coupling to spin. We derive an effective Hamiltonian whose eigenstates carry spin currents that are protected by spin-inactive stretching optical modes. As optical phonons interact more strongly than acoustic phonons, side buckling and tilting optical base modes will be more strongly associated with decoherence, which allows for the two terminal spin filtering effects found in CISS.


Asunto(s)
ADN , Fonones , Transporte de Electrón , Electrones
3.
J Chem Phys ; 159(22)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38063226

RESUMEN

We analyze from a theoretical perspective recent experiments where chiral discrimination in biological systems was established using Atomic Force Microscopy (AFM). Even though intermolecular forces involved in AFM measurements have different origins, i.e., electrostatic, bonding, exchange, and multipole interactions, the key molecular forces involved in enantiospecific biorecognition are electronic spin exchange and van der Waals (vdW) dispersion forces, which are sensitive to spin-orbit interaction (SOI) and space-inversion symmetry breaking in chiral molecules. The vdW contribution to chiral discrimination emerges from the inclusion of SOI and spin fluctuations due to the chiral-induced selectivity effect, a result we have recently demonstrated theoretically. Considering these two enantiospecific contributions, we show that the AFM results regarding chiral recognition can be understood in terms of a simple physical model that describes the different adhesion forces associated with different electron spin polarization generated in the (DD), (LL), and (DL) enantiomeric pairs, as arising from the spin part of the exchange and vdW contributions. The model can successfully produce physically reasonable parameters accounting for the vdW and exchange interaction strength, accounting for the chiral discrimination effect. This fact has profound implications in biorecognition where the relevant intermolecular interactions in the intermediate-distance regime are clearly connected to vdW forces.

4.
Angew Chem Int Ed Engl ; 62(16): e202218640, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36806838

RESUMEN

We report on the chemical design of chiral molecular junctions with stress-dependent conductance, whose helicity is maintained during the stretching of a single molecule junction due to the stapling of both ends of the inner helix. In the reported compounds, different conductive pathways are observed, with clearly different conductance values and plateau-length distributions, attributed to different conformations of the helical structures. The large chiro-optical responses and the potential use of these molecules as unimolecular spin filters have been theoretically proved using state-of-the-art Density Functional Theory (DFT) calculations, including a fully ab-initio estimation of the CISS-originating spin polarization which is done, for the first time, for a realistic molecular system.

5.
Nano Lett ; 21(24): 10423-10430, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34846905

RESUMEN

Experiments on spin transport through a chiral molecule demonstrated the attainment of significant spin polarization, demanding a theoretical explanation. We report the emergence of spin Fano resonances as a mechanism in the chiral-induced spin-selectivity (CISS) effect associated with transport through a chiral polyacetylene molecule. Initializing electrons through optical excitation, we derive the Fano resonance formula for the spin polarization. Computations reveal that quasidegeneracy is common in this complex molecular system. A remarkable phenomenon is the generation of pronounced spin Fano resonances due to the contributions of two near-degeneracy states. We also find that the Fano resonance width increases linearly with the coupling strength between the molecule and the lead. Our findings provide another mechanism to explain the experimental observations and lead to new insights into the role of the CISS effect in complex molecules from the perspective of transport and spin polarization resonance, paving the way for chiral molecule-based spintronics applications.


Asunto(s)
Electrones , Vibración , Estereoisomerismo
6.
Nano Lett ; 20(10): 7077-7086, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32786950

RESUMEN

The physical origin of the so-called chirality-induced spin selectivity (CISS) effect has puzzled experimental and theoretical researchers over the past few years. Early experiments were interpreted in terms of unconventional spin-orbit interactions mediated by the helical geometry. However, more recent experimental studies have clearly revealed that electronic exchange interactions also play a key role in the magnetic response of chiral molecules in singlet states. In this investigation, we use spin-polarized closed-shell density functional theory calculations to address the influence of exchange contributions to the interaction between helical molecules as well as of helical molecules with magnetized substrates. We show that exchange effects result in differences in the interaction properties with magnetized surfaces, shedding light into the possible origin of two recent important experimental results: enantiomer separation and magnetic exchange force microscopy with AFM tips functionalized with helical peptides.

7.
Nano Lett ; 20(12): 8476-8482, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33170013

RESUMEN

An enantiopure, conductive, and paramagnetic crystalline 3-D metal-organic framework (MOF), based on Dy(III) and the l-tartrate chiral ligand, is proved to behave as an almost ideal electron spin filtering material at room temperature, transmitting one spin component only, leading to a spin polarization (SP) power close to 100% in the ±2 V range, which is conserved over a long spatial range, larger than 1 µm in some cases. This impressive spin polarization capacity of this class of nanostructured materials is measured by means of magnetically polarized conductive atomic force microscopy and is attributed to the Chirality-Induced Spin Selectivity (CISS) effect of the material arising from a multidimensional helicity pattern, the inherited chirality of the organic motive, and the enhancing influence of Dy(III) ions on the CISS effect, with large spin-orbit coupling values. Our results represent the first example of a MOF-based and CISS-effect-mediated spin filtering material that shows a nearly perfect SP. These striking results obtained with our robust and easy-to-synthesize chiral MOFs constitute an important step forward in to improve the performance of spin filtering materials for spintronic device fabrication.

8.
J Am Chem Soc ; 142(42): 17989-17996, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32941015

RESUMEN

We report herein on a NMR-based enantiospecific response for a family of optically active metal-organic frameworks. Cross-polarization of the 1H-13C couple was performed, and the intensities of the 13C nuclei NMR signals were measured to be different for the two enantiomers. In a direct-pulse experiment, which prevents cross-polarization, the intensity difference of the 13C NMR signals of the two nanostructured enantiomers vanished. This result is due to changes of the nuclear spin relaxation times due to the electron spin spatial asymmetry induced by chemical bond polarization involving a chiral center. These experiments put forward on firm ground that the chiral-induced spin selectivity effect, which induces chemical bond polarization in the J-coupling, is the mechanism responsible for the enantiospecific response. The implications of this finding for the theory of this molecular electron spin polarization effect and the development of quantum biosensing and quantum storage devices are discussed.


Asunto(s)
Estructuras Metalorgánicas/química , Espectroscopía de Resonancia Magnética , Estructuras Metalorgánicas/síntesis química , Fenómenos Ópticos
9.
J Chem Phys ; 153(16): 165102, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33138441

RESUMEN

We analyze the influence of electron-phonon (e-ph) interaction in a model for electron transfer (ET) processes in DNA in terms of the envelope function approach for spinless electrons. We are specifically concerned with the effect of e-ph interaction on the coherence of the ET process and how to model the interaction of DNA with phonon reservoirs of biological relevance. We assume that the electron bearing orbitals are half filled and derive the physics of e-ph coupling in the vicinity in reciprocal space. We find that at half filling, the acoustical modes are decoupled to ET at first order, while optical modes are predominant. The latter are associated with inter-strand vibrational modes in consistency with previous studies involving polaron models of ET. Coupling to acoustic modes depends on electron doping of DNA, while optical modes are always coupled within our model. Our results yield e-ph coupling consistent with estimates in the literature, and we conclude that large polarons are the main result of such e-ph interactions. This scenario will have strong consequences on decoherence of ET under physiological conditions due to relative isolation from thermal equilibration of the ET mechanism.


Asunto(s)
ADN/química , Electrones , Modelos Moleculares , Transporte de Electrón
10.
Chimia (Aarau) ; 72(6): 411-417, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29941078

RESUMEN

We consider molecular straining as a probe to understand the mobility and spin active features of complex molecules. The strength of the spin-orbit interaction relevant to transport in a low dimensional structure depends critically on the relative geometrical arrangement of current-carrying orbitals. Understanding the origin of the enhanced spin-orbit interaction in chiral systems is crucial to be able to control the spin selectivity observed in the experiments, which is a hallmark of the Chiral-Induced Selectivity Effect (CISS). Recent tight-binding orbital models for spin transport in DNA-like molecules, have surmised that the band spin-orbit (SO) coupling arises from the particular angular relations between orbitals of neighboring bases on the helical chain. Such arrangements could be probed by straining the molecule in a conductive probe AFM/Break junction type setup, as was recently reported by Kiran, Cohen and Naaman. Here we report strain-dependent kinetic and SO coupling when a double-strand DNA model is compressed or stretched in two experimentally feasible setups with peculiar deformation properties. We find that the mobility and the SO coupling can be tuned appreciably by strain, and the analytical model bears out the qualitative trends of the experiments.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Rotación
11.
J Am Chem Soc ; 139(3): 1033-1036, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28052189

RESUMEN

We describe a new electrochemical cycle that enables capture and release of carbon dioxide. The capture agent is benzylthiolate (RS-), generated electrochemically by reduction of benzyldisulfide (RSSR). Reaction of RS- with CO2 produces a terminal, sulfur-bound monothiocarbonate, RSCO2-, which acts as the CO2 carrier species, much the same as a carbamate serves as the CO2 carrier for amine-based capture strategies. Oxidation of the thiocarbonate releases CO2 and regenerates RSSR. The newly reported S-benzylthiocarbonate (IUPAC name benzylsulfanylformate) is characterized by 1H and 13C NMR, FTIR, and electrochemical analysis. The capture-release cycle is studied in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP TFSI) and dimethylformamide. Quantum chemical calculations give a binding energy of CO2 to benzyl thiolate of -66.3 kJ mol-1, consistent with the experimental observation of formation of a stable CO2 adduct. The data described here represent the first report of electrochemical behavior of a sulfur-bound terminal thiocarbonate.

12.
Small ; 13(2)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27753200

RESUMEN

The electronic spin filtering capability of a single chiral helical peptide is measured. A ferromagnetic electrode source is employed to inject spin-polarized electrons in an asymmetric single-molecule junction bridging an α-helical peptide sequence of known chirality. The conductance comparison between both isomers allows the direct determination of the polarization power of an individual chiral molecule.


Asunto(s)
Péptidos/química , Marcadores de Spin , Secuencia de Aminoácidos , Conductividad Eléctrica , Electrodos , Electrones , Oro/química , Níquel/química , Estereoisomerismo
13.
J Am Chem Soc ; 138(2): 679-87, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26694660

RESUMEN

An exponential decrease of molecular conductance with length has been observed in most molecular systems reported to date, and has been taken as a signature of non-resonant tunneling as the conduction mechanism. Surprisingly, the conductance of iodide-terminated oligothiophene molecules presented herein does not follow the simple exponential length dependence. The lack of temperature dependence in the conductance indicates that tunneling still dominates the conduction mechanism in the molecules. Transition voltage spectroscopy shows that the tunneling barrier of the oligothiophene decreases with length, but the decrease is insufficient to explain the non-exponential length dependence. X-ray photoelectron spectroscopy, stretching length measurement, and theoretical calculations show that the non-exponential length dependence is due to a transition in the binding geometry of the molecule to the electrodes in the molecular junctions as the length increases.

14.
Chemphyschem ; 17(16): 2590-5, 2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27145884

RESUMEN

Currently, there is considerable interest in the properties of semiconducting metal oxide nanoparticle substrates because of their utility in surface-enhanced Raman scattering, dye-sensitized solar cells, and photocatalysis. While the enhancement of Raman activities of molecules adsorbed on these nanoparticles is due to a large increase in the polarizability, because of charge transfer from the molecule to the semiconducting nanoparticle, little is known about the factors responsible for modulating the polarizability, particularly the influence of the solvent. Consequently, we have carried out Monte Carlo simulations of several hybrids to study the solvent effect on the dynamic polarizabilities and electronic spectra. Our results indicate that the presence of the solvent induces a shift and an increase in the polarization response that is dependent on the identity of the hybrid. The observed enhancement can be attributed to both the resonant character of the excitation and the participation of the solvent in the charge redistribution. The methodology employed in this work could be very valuable in both identifying and developing metal oxides as novel molecular sensors.

15.
J Am Chem Soc ; 137(3): 1109-15, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25562523

RESUMEN

Here we report the electrocatalytic reduction of protons to hydrogen by a novel S2P2 coordinated nickel complex, [Ni(bdt)(dppf)] (bdt = 1,2-benzenedithiolate, dppf = 1,1'-bis(diphenylphosphino)ferrocene). The catalysis is fast and efficient with a turnover frequency of 1240 s(-1) and an overpotential of only 265 mV for half activity at low acid concentrations. Furthermore, catalysis is possible using a weak acid, and the complex is stable for at least 4 h in acidic solution. Calculations of the system carried out at the density functional level of theory (DFT) are consistent with a mechanism for catalysis in which both protonations take place at the nickel center.


Asunto(s)
Hidrógeno/química , Níquel/química , Compuestos Organometálicos/química , Fosfinas/química , Catálisis , Técnicas Electroquímicas , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Teoría Cuántica
16.
Phys Rev Lett ; 115(11): 113006, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26406830

RESUMEN

The scattering amplitude from a set of discrete states coupled to a continuum became known as the Fano profile, characteristic for its asymmetric line shape and originally investigated in the context of photoionization. The generality of the model and the proliferation of engineered nanostructures with confined states gives immense success to the Fano line shape, which is invoked whenever an asymmetric line shape is encountered. However, many of these systems do not conform to the initial model worked out by Fano in that (i) they are subject to dissipative processes and (ii) the observables are not entirely analogous to the ones measured in the original photoionization experiments. In this Letter, we work out the full optical response of a Fano model with dissipation. We find that the exact result for the excited population, Raman, Rayleigh, and fluorescence emission is a modified Fano profile where the typical line shape has an additional Lorentzian contribution. Expressions to extract model parameters from a set of relevant observables are given.

17.
J Chem Phys ; 142(19): 194308, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26001462

RESUMEN

A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p(z) type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π(z) - π(z) coupling via interbase p(x,y) - p(z) hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

18.
Small ; 10(5): 907-11, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24150895

RESUMEN

Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understanding the magnetic properties resulting from quantum size effects in such atomically precise gold clusters could lead to new fundamental discoveries and applications.

19.
Inorg Chem ; 53(17): 8919-29, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25110946

RESUMEN

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P2 [bdt = benzene-1,2-dithiolate; P2 = 1,1'-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fe(d)) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of the complexes reveal that, despite similar ν(CO) stretching band frequencies, the two complexes have different coordination geometries. In X-ray crystal structures, the iron center of 1 is in a distorted trigonal bipyramidal arrangement, and that of 2 is in a distorted square pyramidal geometry. Electrochemical investigation shows that both complexes catalyze electrochemical proton reduction from acetic acid at mild overpotential, 0.17 and 0.38 V for 1 and 2, respectively. Although coordinatively unsaturated, the complexes display only weak, reversible binding affinity toward CO (1 bar). However, ligand centered protonation by the strong acid, HBF4·OEt2, triggers quantitative CO uptake by 1 to form a dicarbonyl analogue [1(H)-CO](+) that can be reversibly converted back to 1 by deprotonation using NEt3. Both crystallographically determined distances within the bdt ligand and density functional theory calculations suggest that the iron centers in both 1 and 2 are partially reduced at the expense of partial oxidation of the bdt ligand. Ligand protonation interrupts this extensive electronic delocalization between the Fe and bdt making 1(H)(+) susceptible to external CO binding.


Asunto(s)
Quelantes/química , Compuestos Ferrosos/química , Cetonas/química , Fosfinas/química , Compuestos de Sulfhidrilo/química , Catálisis
20.
J Phys Chem A ; 118(7): 1196-202, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24456493

RESUMEN

Hybrids consisting of a metal oxide nanoparticle and a molecule show strong enhancement of Raman modes due to an interfacial charge transfer process that induces the formation of midgap states, thereby reducing the effective gap compared to that of the nanoparticle and creating the posibility of an electronic resonance at energies substantially lower than the nanoparticles's band gap. We have developed a simple methodology to mimic the presence of the nanoparticle through a deformation of the bond involved in the chemical binding between the two entities forming the hybrid. The results provide a convincing interpretative frame to the enhancements observed in Raman spectra when all atoms are included. In addition, these enhancements can be correlated to a crossing of excited molecular orbitals that take part in the virtual excitation associated with the Raman process. We illustrate our method for the dopamine-Ti2O4 hybrid using the most acidic molecular O-H bond as the control parameter for the deformation.


Asunto(s)
Dopamina/química , Nanopartículas del Metal/química , Espectrometría Raman , Titanio/química , Hidrógeno/química , Modelos Moleculares , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA