Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 624(7991): 355-365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092919

RESUMEN

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Asunto(s)
Encéfalo , Epigenómica , Vías Nerviosas , Neuronas , Animales , Ratones , Amígdala del Cerebelo , Encéfalo/citología , Encéfalo/metabolismo , Secuencia de Consenso , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Hipotálamo/citología , Mesencéfalo/citología , Vías Nerviosas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Rombencéfalo/citología , Análisis de la Célula Individual , Tálamo/citología , Factores de Transcripción/metabolismo
2.
Nature ; 598(7879): 120-128, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616061

RESUMEN

Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.


Asunto(s)
Encéfalo/citología , Metilación de ADN , Epigenoma , Epigenómica , Neuronas/clasificación , Neuronas/metabolismo , Análisis de la Célula Individual , Animales , Atlas como Asunto , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/química , Citosina/metabolismo , Conjuntos de Datos como Asunto , Giro Dentado/citología , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Vías Nerviosas , Neuronas/citología
3.
Nature ; 598(7879): 129-136, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616068

RESUMEN

The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures1. Recent surveys of mouse and human brains with single-cell transcriptomics2-6 and high-throughput imaging technologies7,8 have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.


Asunto(s)
Cerebro/citología , Cerebro/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Atlas como Asunto , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/genética , Neuroglía/clasificación , Neuroglía/metabolismo , Neuronas/clasificación , Neuronas/metabolismo , Análisis de Secuencia de ADN , Análisis de la Célula Individual
4.
Nature ; 598(7879): 167-173, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616065

RESUMEN

Neuronal cell types are classically defined by their molecular properties, anatomy and functions. Although recent advances in single-cell genomics have led to high-resolution molecular characterization of cell type diversity in the brain1, neuronal cell types are often studied out of the context of their anatomical properties. To improve our understanding of the relationship between molecular and anatomical features that define cortical neurons, here we combined retrograde labelling with single-nucleus DNA methylation sequencing to link neural epigenomic properties to projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical and cortico-subcortical long-distance projections. Our results showed unique epigenetic signatures of projection neurons that correspond to their laminar and regional location and projection patterns. On the basis of their epigenomes, intra-telencephalic cells that project to different cortical targets could be further distinguished, and some layer 5 neurons that project to extra-telencephalic targets (L5 ET) formed separate clusters that aligned with their axonal projections. Such separation varied between cortical areas, which suggests that there are area-specific differences in L5 ET subtypes, which were further validated by anatomical studies. Notably, a population of cortico-cortical projection neurons clustered with L5 ET rather than intra-telencephalic neurons, which suggests that a population of L5 ET cortical neurons projects to both targets. We verified the existence of these neurons by dual retrograde labelling and anterograde tracing of cortico-cortical projection neurons, which revealed axon terminals in extra-telencephalic targets including the thalamus, superior colliculus and pons. These findings highlight the power of single-cell epigenomic approaches to connect the molecular properties of neurons with their anatomical and projection properties.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Epigenoma , Epigenómica , Vías Nerviosas , Neuronas/clasificación , Neuronas/metabolismo , Animales , Mapeo Encefálico , Femenino , Masculino , Ratones , Neuronas/citología
5.
Mol Psychiatry ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879719

RESUMEN

Substance use disorders (SUD) and drug addiction are major threats to public health, impacting not only the millions of individuals struggling with SUD, but also surrounding families and communities. One of the seminal challenges in treating and studying addiction in human populations is the high prevalence of co-morbid conditions, including an increased risk of contracting a human immunodeficiency virus (HIV) infection. Of the ~15 million people who inject drugs globally, 17% are persons with HIV. Conversely, HIV is a risk factor for SUD because chronic pain syndromes, often encountered in persons with HIV, can lead to an increased use of opioid pain medications that in turn can increase the risk for opioid addiction. We hypothesize that SUD and HIV exert shared effects on brain cell types, including adaptations related to neuroplasticity, neurodegeneration, and neuroinflammation. Basic research is needed to refine our understanding of these affected cell types and adaptations. Studying the effects of SUD in the context of HIV at the single-cell level represents a compelling strategy to understand the reciprocal interactions among both conditions, made feasible by the availability of large, extensively-phenotyped human brain tissue collections that have been amassed by the Neuro-HIV research community. In addition, sophisticated animal models that have been developed for both conditions provide a means to precisely evaluate specific exposures and stages of disease. We propose that single-cell genomics is a uniquely powerful technology to characterize the effects of SUD and HIV in the brain, integrating data from human cohorts and animal models. We have formed the Single-Cell Opioid Responses in the Context of HIV (SCORCH) consortium to carry out this strategy.

6.
Proc Natl Acad Sci U S A ; 117(45): 28422-28432, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33109720

RESUMEN

The human cerebral cortex contains many cell types that likely underwent independent functional changes during evolution. However, cell-type-specific regulatory landscapes in the cortex remain largely unexplored. Here we report epigenomic and transcriptomic analyses of the two main cortical neuronal subtypes, glutamatergic projection neurons and GABAergic interneurons, in human, chimpanzee, and rhesus macaque. Using genome-wide profiling of the H3K27ac histone modification, we identify neuron-subtype-specific regulatory elements that previously went undetected in bulk brain tissue samples. Human-specific regulatory changes are uncovered in multiple genes, including those associated with language, autism spectrum disorder, and drug addiction. We observe preferential evolutionary divergence in neuron subtype-specific regulatory elements and show that a substantial fraction of pan-neuronal regulatory elements undergoes subtype-specific evolutionary changes. This study sheds light on the interplay between regulatory evolution and cell-type-dependent gene-expression programs, and provides a resource for further exploration of human brain evolution and function.


Asunto(s)
Corteza Cerebral/metabolismo , Evolución Molecular , Neuronas/metabolismo , Animales , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Epigénesis Genética , Epigenómica , Expresión Génica , Código de Histonas , Humanos , Interneuronas/metabolismo , Macaca mulatta/genética , Pan troglodytes/genética , Primates/genética , Elementos Reguladores de la Transcripción , Secuencias Reguladoras de Ácidos Nucleicos , Transcriptoma
7.
Nature ; 523(7559): 212-6, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26030523

RESUMEN

Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals' phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Factores de Edad , Alelos , Mapeo Cromosómico , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Variación Genética , Humanos , Masculino , Especificidad de Órganos
8.
Proc Natl Acad Sci U S A ; 114(14): E2882-E2890, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28320934

RESUMEN

DNA methylation at gene promoters in a CG context is associated with transcriptional repression, including at genes silenced on the inactive X chromosome in females. Non-CG methylation (mCH) is a distinct feature of the neuronal epigenome that is differentially distributed between males and females on the X chromosome. However, little is known about differences in mCH on the active (Xa) and inactive (Xi) X chromosomes because stochastic X-chromosome inactivation (XCI) confounds allele-specific epigenomic profiling. We used whole-genome bisulfite sequencing in a mouse model with nonrandom XCI to examine allele-specific DNA methylation in frontal cortex. Xi was largely devoid of mCH, whereas Xa contained abundant mCH similar to the male X chromosome and the autosomes. In contrast to the repressive association of DNA methylation at CG dinucleotides (mCG), mCH accumulates on Xi in domains with transcriptional activity, including the bodies of most genes that escape XCI and at the X-inactivation center, validating this epigenetic mark as a signature of transcriptional activity. Escape genes showing CH hypermethylation were the only genes with CG-hypomethylated promoters on Xi, a well-known mark of active transcription. Finally, we found extensive allele-specific mCH and mCG at autosomal imprinted regions, some with a negative correlation between methylation in the two contexts, further supporting their distinct functions. Our findings show that neuronal mCH functions independently of mCG and is a highly dynamic epigenomic correlate of allele-specific gene regulation.


Asunto(s)
Encéfalo/fisiología , Cromatina/metabolismo , Metilación de ADN , Alelos , Animales , Epigénesis Genética , Femenino , Impresión Genómica , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante/genética , Cromosoma X , Inactivación del Cromosoma X
9.
Neurobiol Dis ; 125: 211-218, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30716470

RESUMEN

BACKGROUND: Epidemiological studies suggest that the risk of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia is increased by prenatal exposure to viral or bacterial infection during pregnancy. It is still unclear how activation of the maternal immune response interacts with underlying genetic factors to influence observed ASD phenotypes. METHODS: The current study investigated how maternal immune activation (MIA) in mice impacts gene expression in the frontal cortex in adulthood, and how these molecular changes relate to deficits in cognitive flexibility and social behavior, and increases in repetitive behavior that are prevalent in ASD. Poly(I:C) (20 mg/kg) was administered to dams on E12.5 and offspring were tested for social approach behavior, repetitive grooming, and probabilistic reversal learning in adulthood (n = 8 vehicle; n = 9 Poly(I:C)). We employed next-generation high-throughput mRNA sequencing (RNA-seq) to comprehensively investigate the transcriptome profile in frontal cortex of adult offspring of Poly(I:C)-exposed dams. RESULTS: Exposure to poly(I:C) during gestation impaired probabilistic reversal learning and decreased social approach in MIA offspring compared to controls. We found long-term effects of MIA on expression of 24 genes, including genes involved in glutamatergic neurotransmission, mTOR signaling and potassium ion channel activity. Correlations between gene expression and specific behavioral measures provided insight into genes that may be responsible for ASD-like behavioral alterations. CONCLUSIONS: These findings suggest that MIA can lead to impairments in cognitive flexibility in mice similar to those exhibited in ASD individuals, and that these impairments are associated with altered gene expression in frontal cortex.


Asunto(s)
Lóbulo Frontal/inmunología , Trastornos del Neurodesarrollo/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Transcripción Genética/inmunología , Animales , Conducta Animal/fisiología , Cognición/fisiología , Femenino , Lóbulo Frontal/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Conducta Social
10.
Annu Rev Neurosci ; 32: 435-506, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19555292

RESUMEN

Since the work of Golgi and Cajal, light microscopy has remained a key tool for neuroscientists to observe cellular properties. Ongoing advances have enabled new experimental capabilities using light to inspect the nervous system across multiple spatial scales, including ultrastructural scales finer than the optical diffraction limit. Other progress permits functional imaging at faster speeds, at greater depths in brain tissue, and over larger tissue volumes than previously possible. Portable, miniaturized fluorescence microscopes now allow brain imaging in freely behaving mice. Complementary progress on animal preparations has enabled imaging in head-restrained behaving animals, as well as time-lapse microscopy studies in the brains of live subjects. Mouse genetic approaches permit mosaic and inducible fluorescence-labeling strategies, whereas intrinsic contrast mechanisms allow in vivo imaging of animals and humans without use of exogenous markers. This review surveys such advances and highlights emerging capabilities of particular interest to neuroscientists.


Asunto(s)
Microscopía/instrumentación , Microscopía/métodos , Sistema Nervioso/citología , Neuronas/citología , Neurociencias/instrumentación , Neurociencias/métodos , Animales , Humanos , Citometría de Imagen/instrumentación , Citometría de Imagen/métodos , Citometría de Imagen/tendencias , Ratones , Ratones Transgénicos , Microscopía/tendencias , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Microscopía Confocal/tendencias , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microscopía Fluorescente/tendencias , Biología Molecular/instrumentación , Biología Molecular/métodos , Biología Molecular/tendencias , Neuronas/fisiología , Neurociencias/tendencias
12.
Proc Natl Acad Sci U S A ; 110(12): E1142-51, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23487781

RESUMEN

Unconsciousness is a fundamental component of general anesthesia (GA), but anesthesiologists have no reliable ways to be certain that a patient is unconscious. To develop EEG signatures that track loss and recovery of consciousness under GA, we recorded high-density EEGs in humans during gradual induction of and emergence from unconsciousness with propofol. The subjects executed an auditory task at 4-s intervals consisting of interleaved verbal and click stimuli to identify loss and recovery of consciousness. During induction, subjects lost responsiveness to the less salient clicks before losing responsiveness to the more salient verbal stimuli; during emergence they recovered responsiveness to the verbal stimuli before recovering responsiveness to the clicks. The median frequency and bandwidth of the frontal EEG power tracked the probability of response to the verbal stimuli during the transitions in consciousness. Loss of consciousness was marked simultaneously by an increase in low-frequency EEG power (<1 Hz), the loss of spatially coherent occipital alpha oscillations (8-12 Hz), and the appearance of spatially coherent frontal alpha oscillations. These dynamics reversed with recovery of consciousness. The low-frequency phase modulated alpha amplitude in two distinct patterns. During profound unconsciousness, alpha amplitudes were maximal at low-frequency peaks, whereas during the transition into and out of unconsciousness, alpha amplitudes were maximal at low-frequency nadirs. This latter phase-amplitude relationship predicted recovery of consciousness. Our results provide insights into the mechanisms of propofol-induced unconsciousness, establish EEG signatures of this brain state that track transitions in consciousness precisely, and suggest strategies for monitoring the brain activity of patients receiving GA.


Asunto(s)
Estado de Conciencia/efectos de los fármacos , Electroencefalografía , Lóbulo Frontal/fisiopatología , Hipnóticos y Sedantes/administración & dosificación , Propofol/administración & dosificación , Inconsciencia/fisiopatología , Adolescente , Adulto , Femenino , Humanos , Masculino , Percepción del Habla/efectos de los fármacos , Factores de Tiempo , Inconsciencia/inducido químicamente
13.
J Neurosci ; 34(3): 839-45, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431442

RESUMEN

Rhythmic oscillations shape cortical dynamics during active behavior, sleep, and general anesthesia. Cross-frequency phase-amplitude coupling is a prominent feature of cortical oscillations, but its role in organizing conscious and unconscious brain states is poorly understood. Using high-density EEG and intracranial electrocorticography during gradual induction of propofol general anesthesia in humans, we discovered a rapid drug-induced transition between distinct states with opposite phase-amplitude coupling and different cortical source distributions. One state occurs during unconsciousness and may be similar to sleep slow oscillations. A second state occurs at the loss or recovery of consciousness and resembles an enhanced slow cortical potential. These results provide objective electrophysiological landmarks of distinct unconscious brain states, and could be used to help improve EEG-based monitoring for general anesthesia.


Asunto(s)
Anestésicos Intravenosos/administración & dosificación , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Electroencefalografía/efectos de los fármacos , Propofol/administración & dosificación , Inconsciencia/fisiopatología , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Inconsciencia/inducido químicamente
14.
Proc Natl Acad Sci U S A ; 109(49): E3377-86, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23129622

RESUMEN

The neurophysiological mechanisms by which anesthetic drugs cause loss of consciousness are poorly understood. Anesthetic actions at the molecular, cellular, and systems levels have been studied in detail at steady states of deep general anesthesia. However, little is known about how anesthetics alter neural activity during the transition into unconsciousness. We recorded simultaneous multiscale neural activity from human cortex, including ensembles of single neurons, local field potentials, and intracranial electrocorticograms, during induction of general anesthesia. We analyzed local and global neuronal network changes that occurred simultaneously with loss of consciousness. We show that propofol-induced unconsciousness occurs within seconds of the abrupt onset of a slow (<1 Hz) oscillation in the local field potential. This oscillation marks a state in which cortical neurons maintain local patterns of network activity, but this activity is fragmented across both time and space. Local (<4 mm) neuronal populations maintain the millisecond-scale connectivity patterns observed in the awake state, and spike rates fluctuate and can reach baseline levels. However, neuronal spiking occurs only within a limited slow oscillation-phase window and is silent otherwise, fragmenting the time course of neural activity. Unexpectedly, we found that these slow oscillations occur asynchronously across cortex, disrupting functional connectivity between cortical areas. We conclude that the onset of slow oscillations is a neural correlate of propofol-induced loss of consciousness, marking a shift to cortical dynamics in which local neuronal networks remain intact but become functionally isolated in time and space.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Anestésicos Intravenosos/farmacología , Corteza Cerebral/efectos de los fármacos , Epilepsia/fisiopatología , Red Nerviosa/efectos de los fármacos , Propofol/farmacología , Inconsciencia/fisiopatología , Potenciales de Acción/fisiología , Anestesia General , Corteza Cerebral/fisiología , Humanos , Modelos Lineales , Factores de Tiempo , Inconsciencia/inducido químicamente
15.
Neuron ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838671

RESUMEN

Altered transcriptional and epigenetic regulation of brain cell types may contribute to cognitive changes with advanced age. Using single-nucleus multi-omic DNA methylation and transcriptome sequencing (snmCT-seq) in frontal cortex from young adult and aged donors, we found widespread age- and sex-related variation in specific neuron types. The proportion of inhibitory SST- and VIP-expressing neurons was reduced in aged donors. Excitatory neurons had more profound age-related changes in their gene expression and DNA methylation than inhibitory cells. Hundreds of genes involved in synaptic activity, including EGR1, were less expressed in aged adults. Genes located in subtelomeric regions increased their expression with age and correlated with reduced telomere length. We further mapped cell-type-specific sex differences in gene expression and X-inactivation escape genes. Multi-omic single-nucleus epigenomes and transcriptomes provide new insight into the effects of age and sex on human neurons.

16.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187559

RESUMEN

Somatic mutations alter the genomes of a subset of an individual's brain cells1-3, impacting gene regulation and contributing to disease processes4,5. Mosaic single nucleotide variants have been characterized with single-cell resolution in the brain2,3, but we have limited information about large-scale structural variation, including whole-chromosome duplication or loss1,6,7. We used a dataset of over 415,000 single-cell DNA methylation and chromatin conformation profiles across the adult mouse brain to identify aneuploid cells comprehensively. Whole-chromosome loss or duplication occurred in <1% of cells, with rates up to 1.8% in non-neuronal cell types, including oligodendrocyte precursors and pericytes. Among all aneuploidies, we observed a strong enrichment of trisomy on chromosome 16, which is syntenic with human chromosome 21 and constitutively trisomic in Down syndrome. Chromosome 16 trisomy occurred in multiple cell types and across brain regions, suggesting that nondisjunction is a recurrent feature of somatic variation in the brain.

17.
Res Sq ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106071

RESUMEN

INTRODUCTION: The R47H missense mutation of the TREM2 gene is a strong risk factor for development of Alzheimer's Disease. We investigate cell-type-specific spatial transcriptomic changes induced by the Trem2R47H mutation to determine the impacts of this mutation on transcriptional dysregulation. METHODS: We profiled 15 mouse brain sections consisting of wild-type, Trem2R47H, 5xFAD and Trem2R47H; 5xFAD genotypes using MERFISH spatial transcriptomics. Single-cell spatial transcriptomics and neuropathology data were analyzed using our custom pipeline to identify plaque and Trem2R47H induced transcriptomic dysregulation. RESULTS: The Trem2R47H mutation induced consistent upregulation of Bdnf and Ntrk2 across many cortical excitatory neuron types, independent of amyloid pathology. Spatial investigation of genotype enriched subclusters identified spatially localized neuronal subpopulations reduced in 5xFAD and Trem2R47H; 5xFAD mice. CONCLUSION: Spatial transcriptomics analysis identifies glial and neuronal transcriptomic alterations induced independently by 5xFAD and Trem2R47H mutations, impacting inflammatory responses in microglia and astrocytes, and activity and BDNF signaling in neurons.

18.
Nat Commun ; 14(1): 5714, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714849

RESUMEN

A repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we investigate single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem motor and frontal cortices from C9-ALS, C9-FTD, and control donors. C9-ALS donors present pervasive alterations of gene expression with concordant changes in chromatin accessibility and histone modifications. The greatest alterations occur in upper and deep layer excitatory neurons, as well as in astrocytes. In neurons, the changes imply an increase in proteostasis, metabolism, and protein expression pathways, alongside a decrease in neuronal function. In astrocytes, the alterations suggest activation and structural remodeling. Conversely, C9-FTD donors have fewer high-quality neuronal nuclei in the frontal cortex and numerous gene expression changes in glial cells. These findings highlight a context-dependent molecular disruption in C9-ALS and C9-FTD, indicating unique effects across cell types, brain regions, and diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Transcriptoma/genética , Epigenoma , Mutación
19.
Cell Genom ; 3(7): 100342, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37492103

RESUMEN

Single-cell sequencing could help to solve the fundamental challenge of linking millions of cell-type-specific enhancers with their target genes. However, this task is confounded by patterns of gene co-expression in much the same way that genetic correlation due to linkage disequilibrium confounds fine-mapping in genome-wide association studies (GWAS). We developed a non-parametric permutation-based procedure to establish stringent statistical criteria to control the risk of false-positive associations in enhancer-gene association studies (EGAS). We applied our procedure to large-scale transcriptome and epigenome data from multiple tissues and species, including the mouse and human brain, to predict enhancer-gene associations genome wide. We tested the functional validity of our predictions by comparing them with chromatin conformation data and causal enhancer perturbation experiments. Our study shows how controlling for gene co-expression enables robust enhancer-gene linkage using single-cell sequencing data.

20.
Biophys J ; 102(10): 2391-400, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22677393

RESUMEN

Superresolution microscopy techniques based on the sequential activation of fluorophores can achieve image resolution of ∼10 nm but require a sparse distribution of simultaneously activated fluorophores in the field of view. Image analysis procedures for this approach typically discard data from crowded molecules with overlapping images, wasting valuable image information that is only partly degraded by overlap. A data analysis method that exploits all available fluorescence data, regardless of overlap, could increase the number of molecules processed per frame and thereby accelerate superresolution imaging speed, enabling the study of fast, dynamic biological processes. Here, we present a computational method, referred to as deconvolution-STORM (deconSTORM), which uses iterative image deconvolution in place of single- or multiemitter localization to estimate the sample. DeconSTORM approximates the maximum likelihood sample estimate under a realistic statistical model of fluorescence microscopy movies comprising numerous frames. The model incorporates Poisson-distributed photon-detection noise, the sparse spatial distribution of activated fluorophores, and temporal correlations between consecutive movie frames arising from intermittent fluorophore activation. We first quantitatively validated this approach with simulated fluorescence data and showed that deconSTORM accurately estimates superresolution images even at high densities of activated fluorophores where analysis by single- or multiemitter localization methods fails. We then applied the method to experimental data of cellular structures and demonstrated that deconSTORM enables an approximately fivefold or greater increase in imaging speed by allowing a higher density of activated fluorophores/frame.


Asunto(s)
Algoritmos , Microscopía Fluorescente/métodos , Modelos Estadísticos , Simulación por Computador , Inmunohistoquímica , Microtúbulos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA