Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37959729

RESUMEN

Cinnamaldehyde (CA) showed potent activity against melanoma in our previous study, and the structure of unsaturated aldehydes is envisaged to play a role. Nevertheless, its limited drug availability restricts its clinical application. Therefore, a series of CA analogues were synthesized to evaluate their anti-melanoma activities across various melanoma cell lines. These compounds were also tested for their toxicity against the different normal cell lines. The compound with the most potential, CAD-14, exhibited potent activity against the A375, A875 and SK-MEL-1 cells, with IC50 values of 0.58, 0.65, and 0.82 µM, respectively. A preliminary molecular mechanism study of CAD-14 indicated that it could inhibit the p38 pathway to induce apoptosis, and suppress tumor growth by inhibiting the expression of ENO1. Furthermore, an acute toxicity study depicted that CAD-14 has better safety and tolerability than CA in vivo. These findings indicate that CAD-14 might be a lead compound for exploring effective anti-melanoma drugs.


Asunto(s)
Antineoplásicos , Melanoma , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Melanoma/metabolismo , Acroleína/farmacología , Acroleína/uso terapéutico , Apoptosis , Línea Celular Tumoral , Proliferación Celular
2.
Cells ; 11(22)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36429106

RESUMEN

Non-small-cell lung cancer (NSCLC) is a prevalent malignant tumor with high morbidity and mortality rates worldwide. Although surgical resection, adjuvant radiotherapy/chemotherapy, and targeted molecular therapy are the cornerstones of NSCLC treatment, NSCLC is associated with high recurrence rates and drug resistance. This study analyzed the potential targets and pathways of 6-Shogaol (6-SH) in NSCLC, showing that 6-SH binds to heat-shock 60 kDa protein (HSP60) in A549 cells, induces cell apoptosis, and arrests the cell cycle possibly by disrupting the mitochondrial function. HSP60 was identified as the target of 6-SH and 6-SH-induced HSP60 degradation which was mediated by the proteasome. The binding of 6-SH with HSP60 altered its stability, inhibited the ERK, Stat3, PI3K, Akt, and mTOR signaling pathways, and Tax acted synergistically with 6-SH, indicating that 6-SH could be developed as a potential therapeutic agent for an NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas de Choque Térmico/uso terapéutico , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA