Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell Mol Life Sci ; 66(3): 370-4, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19151919

RESUMEN

Rac1, a member of the Rho family of GTPases, is an intracellular transducer known to regulate multiple signaling pathways that control cytoskeleton organization, transcription, and cell proliferation. Deregulated expression or activation patterns of Rac1 can result in aberrant cell signaling and numerous pathological conditions. Here, we highlight the physiological functions and signaling mechanisms of Rac1 and their relevance to disease.


Asunto(s)
Isoformas de Proteínas/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/metabolismo , Actinas/metabolismo , Animales , Endocitosis/fisiología , Humanos , Isoformas de Proteínas/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al GTP rac/genética
2.
Science ; 269(5220): 79-81, 1995 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-7604283

RESUMEN

Human T cell lymphotropic virus I (HTLV-I) is the etiological agent for adult T cell leukemia and tropical spastic paraparesis (also termed HTLV-I-associated myelopathy). HTLV-I-infected peripheral blood T cells exhibit an initial phase of interleukin-2 (IL-2)-dependent growth; over time, by an unknown mechanism, the cells become IL-2-independent. Whereas the Jak kinases Jak1 and Jak3 and the signal transducer and activator of transcription proteins Stat3 and Stat5 are activated in normal T cells in response to IL-2, this signaling pathway was constitutively activated in HTLV-I-transformed cells. In HTLV-I-infected cord blood lymphocytes, the transition from IL-2-dependent to IL-2-independent growth correlated with the acquisition of a constitutively activated Jak-STAT pathway, which suggests that this pathway participates in HTLV-I-mediated T cell transformation.


Asunto(s)
Transformación Celular Viral , Proteínas de Unión al ADN/metabolismo , Virus Linfotrópico T Tipo 1 Humano/fisiología , Proteínas de la Leche , Proteínas Tirosina Quinasas/metabolismo , Linfocitos T/virología , Transactivadores/metabolismo , Secuencia de Bases , Línea Celular Transformada , Células Cultivadas , Activación Enzimática , Sangre Fetal/citología , Humanos , Interleucina-2/farmacología , Janus Quinasa 1 , Janus Quinasa 3 , Datos de Secuencia Molecular , Fosforilación , Receptores de Interleucina-2/metabolismo , Factor de Transcripción STAT3 , Factor de Transcripción STAT5 , Transducción de Señal , Linfocitos T/metabolismo
3.
Oncogene ; 36(18): 2589-2598, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27819671

RESUMEN

Eradication of leukemia stem cells (LSCs) is the ultimate goal of treating acute myeloid leukemia (AML). We recently showed that the combined loss of Runx1/Cbfb inhibited the development of MLL-AF9-induced AML. However, c-Kit+/Gr-1- cells remained viable in Runx1/Cbfb-deleted cells, indicating that suppressing RUNX activity may not eradicate the most immature LSCs. In this study, we found upregulation of several hemostasis-related genes, including the thrombin-activatable receptor PAR-1 (protease-activated receptor-1), in Runx1/Cbfb-deleted MLL-AF9 cells. Similar to the effect of Runx1/Cbfb deletion, PAR-1 overexpression induced CDKN1A/p21 expression and attenuated proliferation in MLL-AF9 cells. To our surprise, PAR-1 deficiency also prevented leukemia development induced by a small number of MLL-AF9 leukemia stem cells (LSCs) in vivo. PAR-1 deficiency also reduced leukemogenicity of AML1-ETO-induced leukemia. Re-expression of PAR-1 in PAR-1-deficient cells combined with a limiting-dilution transplantation assay demonstrated the cell-dose-dependent role of PAR-1 in MLL-AF9 leukemia: PAR-1 inhibited rapid leukemic proliferation when there were a large number of LSCs, while a small number of LSCs required PAR-1 for their efficient growth. Mechanistically, PAR-1 increased the adherence properties of MLL-AF9 cells and promoted their engraftment to bone marrow. Taken together, these data revealed a multifaceted role for PAR-1 in leukemogenesis, and highlight this receptor as a potential target to eradicate primitive LSCs in AML.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Leucemia Mieloide Aguda/genética , Receptor PAR-1/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Células Madre Neoplásicas/patología , Receptor PAR-1/biosíntesis
4.
Leukemia ; 30(3): 728-39, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26449661

RESUMEN

The t(8;21) rearrangement, which creates the AML1-ETO fusion protein, represents the most common chromosomal translocation in acute myeloid leukemia (AML). Clinical data suggest that CBL mutations are a frequent event in t(8;21) AML, but the role of CBL in AML1-ETO-induced leukemia has not been investigated. In this study, we demonstrate that CBL mutations collaborate with AML1-ETO to expand human CD34+ cells both in vitro and in a xenograft model. CBL depletion by shRNA also promotes the growth of AML1-ETO cells, demonstrating the inhibitory function of endogenous CBL in t(8;21) AML. Mechanistically, loss of CBL function confers hyper-responsiveness to thrombopoietin and enhances STAT5/AKT/ERK/Src signaling in AML1-ETO cells. Interestingly, we found the protein tyrosine phosphatase UBASH3B/Sts-1, which is known to inhibit CBL function, is upregulated by AML1-ETO through transcriptional and miR-9-mediated regulation. UBASH3B/Sts-1 depletion induces an aberrant pattern of CBL phosphorylation and impairs proliferation in AML1-ETO cells. The growth inhibition caused by UBASH3B/Sts-1 depletion can be rescued by ectopic expression of CBL mutants, suggesting that UBASH3B/Sts-1 supports the growth of AML1-ETO cells partly through modulation of CBL function. Our study reveals a role of CBL in restricting myeloid proliferation of human AML1-ETO-induced leukemia, and identifies UBASH3B/Sts-1 as a potential target for pharmaceutical intervention.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Proteínas de Fusión Oncogénica/genética , Preleucemia/genética , Proteínas Tirosina Fosfatasas/genética , Proteínas Proto-Oncogénicas c-cbl/genética , Animales , Proliferación Celular , Cromosomas Humanos Par 21 , Cromosomas Humanos Par 8 , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sangre Fetal/citología , Sangre Fetal/efectos de los fármacos , Sangre Fetal/metabolismo , Xenoinjertos , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones SCID , MicroARNs/genética , MicroARNs/metabolismo , Células Mieloides/citología , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Preleucemia/metabolismo , Preleucemia/patología , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-cbl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-cbl/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína 1 Compañera de Translocación de RUNX1 , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Trombopoyetina/farmacología , Transgenes , Translocación Genética , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
5.
Oncogene ; 34(27): 3483-92, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25263451

RESUMEN

The transcription factor RUNX1 is a master regulator of hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Recent studies also highlight the importance of RUNX1 in solid tumors both as a tumor promoter and a suppressor. Given its central role in cancer development, RUNX1 is an excellent candidate for targeted therapy. A potential strategy to target RUNX1 is through modulation of its posttranslational modifications (PTMs). Numerous studies have shown that RUNX1 activity is regulated by PTMs, including phosphorylation, acetylation, methylation and ubiquitination. These PTMs regulate RUNX1 activity either positively or negatively by altering RUNX1-mediated transcription, promoting protein degradation and affecting protein interactions. In this review, we first summarize the available data on the context- and dosage-dependent roles of RUNX1 in various types of neoplasms. We then provide a comprehensive overview of RUNX1 PTMs from biochemical and biologic perspectives. Finally, we discuss how aberrant PTMs of RUNX1 might contribute to tumorigenesis and also strategies to develop anticancer therapies targeting RUNX1 PTMs.


Asunto(s)
Antineoplásicos/uso terapéutico , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Terapia Molecular Dirigida/métodos , Procesamiento Proteico-Postraduccional , Animales , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/química , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Humanos , Lisina/genética , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/genética , Tirosina/genética
6.
AIDS Res Hum Retroviruses ; 16(16): 1777-81, 2000 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11080826

RESUMEN

Human T cell leukemia/lymphotropic virus types 1 and 2 are two immunologically and phylogenetically related retroviruses that differ in their pathogenicity in vivo. The overall genetic structure of HTLV-1 and -2 is similar. Each contains a unique region at the 3' end of the genome, designated the pX region. p12(I) is a membrane-associated protein encoded by the open reading frame I (ORF I) region of HTLV-1, which lies within the pX region. A corresponding protein, p10(I) is encoded by the ORF I region of HTLV-2 and an additional protein, p11(V), is encoded by ORF V, which overlaps the HTLV-2 ORF I region. As with HTLV-1, the small proteins encoded by the pX region of HTLV-2 appear to be dispensable for viral replication and cellular transformation in vitro. However, the small open reading frames of both viruses are important for viral replication in vivo, which suggests they may play an important role during the viral life cycle. This study was undertaken to investigate and compare the cellular targets of the p10(I), p11(V), and p12(I) putative proteins.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Virus Linfotrópico T Tipo 2 Humano/metabolismo , Proteínas de los Retroviridae/genética , Proteínas de los Retroviridae/metabolismo , Regiones no Traducidas 3'/genética , Línea Celular Transformada , Infecciones por HTLV-I/virología , Infecciones por HTLV-II/virología , Células HeLa , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Virus Linfotrópico T Tipo 2 Humano/genética , Virus Linfotrópico T Tipo 2 Humano/patogenicidad , Humanos , ATPasas de Translocación de Protón/metabolismo , Receptores de Interleucina-2/metabolismo , Linfocitos T/virología
7.
Biochem Pharmacol ; 58(6): 935-50, 1999 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10509746

RESUMEN

Intracellular cyclic AMP, determined in part by cyclic nucleotide phosphodiesterases (PDEs), regulates proliferation and immune functions in lymphoid cells. Total PDE, PDE3, and PDE4 activities were measured in phytohemagglutinin (PHA)-activated peripheral blood mononuclear cells (PBMC-PHA), normal natural killer (NK) cells, Jurkat and Kit225-K6 leukemic T-cells, T-cell lines transformed with human T-lymphotropic virus (HTLV)-I (a retrovirus that causes adult T-cell leukemia/lymphoma) and HTLV-II (a nonpathogenic retrovirus), normal B-cells, and B-cells transformed with Epstein-Barr virus (EBV). All cells exhibited PDE3 and PDE4 activities but in different proportions. In EBV-transformed B cells, PDE4 was much higher than PDE3. HTLV-I+ T-cells differed significantly from other T-lymphocyte-derived cells in also having a higher proportion of PDE4 activities, which apparently were not related to selective induction of any one PDE4 mRNA (judged by reverse transcription-polymerase chain reaction) or expression of the HTLV-I regulatory protein Tax. In MJ cells (an HTLV-I+ T-cell line), Jurkat cells, and PBMC-PHA cells, the tyrosine kinase inhibitor herbimycin A strongly inhibited PDE activity. Growth of MJ cells was inhibited by herbimycin A and a protein kinase C (PKC) inhibitor, and was arrested in G1 by rolipram, a specific PDE4 inhibitor. Proliferation of several HTLV-I+ T-cell lines, PBMC-PHA, and Jurkat cells was inhibited differentially by forskolin (which activates adenylyl cyclase), the selective PDE inhibitors cilostamide and rolipram, and the nonselective PDE inhibitors pentoxifylline and isobutyl methylxanthine. These results suggest that PDE4 isoforms may be functionally up-regulated in HTLV-I+ T-cells and may contribute to the virus-induced proliferation, and that PDEs could be therapeutic targets in immune/inflammatory and neoplastic diseases.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Transformación Celular Viral , Virus Linfotrópico T Tipo 1 Humano/fisiología , Linfocitos/enzimología , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , 3',5'-AMP Cíclico Fosfodiesterasas/genética , Adulto , Linfocitos B/enzimología , Benzoquinonas , División Celular/efectos de los fármacos , Línea Celular Transformada/enzimología , Colforsina/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Inhibidores Enzimáticos/farmacología , Productos del Gen tax/biosíntesis , Productos del Gen tax/metabolismo , Humanos , Interleucina-2/metabolismo , Células Jurkat/enzimología , Células Asesinas Naturales/enzimología , Lactamas Macrocíclicas , Leucocitos Mononucleares/enzimología , Linfocitos/virología , Inhibidores de Proteínas Quinasas , Quinonas/farmacología , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rifabutina/análogos & derivados , Linfocitos T/enzimología
8.
Leukemia ; 26(2): 244-54, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21836612

RESUMEN

The DNA hypomethylating drug decitabine maintains normal hematopoietic stem cell (HSC) self-renewal but induces terminal differentiation in acute myeloid leukemia (AML) cells. The basis for these contrasting cell fates, and for selective CpG hypomethylation by decitabine, is poorly understood. Promoter CpGs, with methylation measured by microarray, were classified by the direction of methylation change with normal myeloid maturation. In AML cells, the methylation pattern at maturation-responsive CpGs suggested at least partial maturation. Consistent with partial maturation, in gene expression analyses, AML cells expressed high levels of the key lineage-specifying factor CEBPA, but relatively low levels of the key late-differentiation driver CEBPE. In methylation analysis by mass spectrometry, CEBPE promoter CpGs that are usually hypomethylated during granulocyte maturation were significantly hypermethylated in AML cells. Decitabine-induced hypomethylation was greatest at these and other promoter CpGs that are usually hypomethylated with myeloid maturation, accompanied by cellular differentiation of AML cells. In contrast, decitabine-treated normal HSCs retained immature morphology, and methylation significantly decreased at CpGs that are less methylated in immature cells. High expression of lineage-specifying factor and aberrant epigenetic repression of some key late-differentiation driver genes distinguishes AML cells from normal HSCs, and could explain the contrasting differentiation and methylation responses to decitabine.


Asunto(s)
Antineoplásicos/uso terapéutico , Azacitidina/análogos & derivados , Islas de CpG , Metilación de ADN , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Azacitidina/uso terapéutico , Secuencia de Bases , Linaje de la Célula , Cartilla de ADN , Decitabina , Humanos , Leucemia Mieloide Aguda/patología , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas
9.
Leukemia ; 26(6): 1329-37, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22289984

RESUMEN

The AML1-ETO fusion protein, which is present in 10-15% of cases of acute myeloid leukemia, is known to repress myeloid differentiation genes through DNA binding and recruitment of chromatin-modifying proteins and transcription factors in target genes. ChIP-chip analysis of human hematopoietic stem/progenitor cells transduced with the AML1-ETO fusion gene enabled us to identify 1168 AML1-ETO target genes, 103 of which were co-occupied by histone deacetylase 1 (HDAC1) and had lost the hyperacetylation mark at histone H4, and 264 showed a K9 trimethylation at histone H3. Enrichment of genes involved in hematopoietic differentiation and in specific signaling pathways was observed in the presence of these epigenetic modifications associated with an 'inactive' chromatin status. Furthermore, AML1-ETO target genes had a significant correlation between the chromatin marks studied and transcriptional silencing. Interestingly, AML1 binding sites were absent on a large number of selected AML1-ETO promoters and an Sp1 binding site was found in over 50% of them. Reversible silencing induced by the fusion protein in the presence of AML1 and/or Sp1 transcription factor binding site was confirmed. Therefore, this study provides a global analysis of AML1-ETO functional chromatin modifications and identifies the important role of Sp1 in the DNA binding pattern of AML1-ETO, suggesting a role for Sp1-targeted therapy in this leukemia subtype.


Asunto(s)
Cromatina/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Factor de Transcripción Sp1/metabolismo , Acetilación , Sitios de Unión , Células Cultivadas , Inmunoprecipitación de Cromatina , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Epigénesis Genética , Genómica , Células Madre Hematopoyéticas/citología , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Proteína 1 Compañera de Translocación de RUNX1 , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción Sp1/antagonistas & inhibidores , Factor de Transcripción Sp1/genética , Cordón Umbilical/citología , Cordón Umbilical/metabolismo
11.
Leukemia ; 25(11): 1739-50, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21701495

RESUMEN

Suppression of apoptosis by TP53 mutation contributes to resistance of acute myeloid leukemia (AML) to conventional cytotoxic treatment. Using differentiation to induce irreversible cell cycle exit in AML cells could be a p53-independent treatment alternative, however, this possibility requires evaluation. In vitro and in vivo regimens of the deoxycytidine analogue decitabine that deplete the chromatin-modifying enzyme DNA methyl-transferase 1 without phosphorylating p53 or inducing early apoptosis were determined. These decitabine regimens but not equimolar DNA-damaging cytarabine upregulated the key late differentiation factors CCAAT enhancer-binding protein ɛ and p27/cyclin dependent kinase inhibitor 1B (CDKN1B), induced cellular differentiation and terminated AML cell cycle, even in cytarabine-resistant p53- and p16/CDKN2A-null AML cells. Leukemia initiation by xenotransplanted AML cells was abrogated but normal hematopoietic stem cell engraftment was preserved. In vivo, the low toxicity allowed frequent drug administration to increase exposure, an important consideration for S phase specific decitabine therapy. In xenotransplant models of p53-null and relapsed/refractory AML, the non-cytotoxic regimen significantly extended survival compared with conventional cytotoxic cytarabine. Modifying in vivo dose and schedule to emphasize this pathway of decitabine action can bypass a mechanism of resistance to standard therapy.


Asunto(s)
Epigénesis Genética , Genes p53 , Leucemia Mieloide Aguda/tratamiento farmacológico , Trasplante Heterólogo , Animales , Antineoplásicos/uso terapéutico , Apoptosis , Azacitidina/análogos & derivados , Azacitidina/uso terapéutico , Western Blotting , Diferenciación Celular , Citarabina/uso terapéutico , Daño del ADN , Decitabina , Electroforesis en Gel de Poliacrilamida , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Fosforilación
14.
Artículo en Inglés | MEDLINE | ID: mdl-8797707

RESUMEN

Human T-lymphotropic/leukemia virus types I and II (HTLV-I and HTLV-II) are phylogenetically and immunologically related viruses that differ in their pathogenicity in vivo. HTLV-I is the etiologic agent of adult T-cell leukemia/lymphoma, as well as a chronic progressive myelopathy, HTLV-I-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-II has not been conclusively associated with specific diseases. Both HTLV-I and HTLV-II transform CD4+ T-cells in vitro, but their in vivo target cells appear to differ. HTLV-I is found mainly in CD4+ cells, whereas HTLV-II has been demonstrated mainly in CD8+ cells. Clearly the definition of the viral genetic determinants responsible for the different tropism and pathogenicity in vivo may provide the basis of our understanding of the HTLV-I oncogenicity. In this short review we emphasize two aspects of viral infection of T cells: (1) the influence of viral infection on the major proteins involved in the G0-G1 phase of the cell cycle and (2) the effect of viral infection on the S phase of the cell cycle, i.e., the interleukin-2 receptor pathway.


Asunto(s)
Infecciones por HTLV-I/virología , Infecciones por HTLV-II/virología , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Virus Linfotrópico T Tipo 2 Humano/patogenicidad , Empalme Alternativo/fisiología , Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/fisiología , Linfocitos T CD8-positivos/virología , Transformación Celular Viral , Fase G1/fisiología , Genes pX/fisiología , Infecciones por HTLV-I/genética , Infecciones por HTLV-II/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 2 Humano/genética , Humanos , Receptores de Interleucina-2/fisiología , Fase de Descanso del Ciclo Celular/fisiología , Fase S/fisiología , Transducción de Señal
15.
J Gen Virol ; 76 ( Pt 8): 1909-16, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7636472

RESUMEN

The p12I protein, a small hydrophobic protein encoded by the human T cell leukaemia/lymphotropic virus type I pX region, contains a proline-rich region located between two putative transmembrane (TM) domains. The p12I protein is associated with cellular endomembranes, and physically binds to the 16 kDa subunit of the vacuolar H+-ATPase proton pump. To investigate the nature of the 16 kDa and p12I interaction and to determine the oncogenic domain of p12I, we constructed p12I mutant proteins in which various portions of the TM domains were deleted, as well as p12I mutant containing a single amino acid substitution. These mutants were tested for binding to the 16 kDa subunit of the vacuolar H+-ATPase in HeLa/Tat cells and for the capability to potentiate transformation by bovine papillomavirus type 1 E5 oncoprotein in mouse C127 cells. The results indicated that both TM domains of the p12I protein were dispensable for its interaction with the 16 kDa protein, whereas partial or complete deletion of the proline-rich region resulted in decreased or no binding of the p12I protein to the 16 kDa subunit. Immunofluorescence analysis of HeLa/Tat cells transfected with the p12I mutants showed that deletion of the proline-rich region did not alter the subcellular localization of these mutant p12I proteins, suggesting direct involvement of the proline-rich domain in binding rather than the failure of these p12I mutants to reach the appropriate cellular compartment. Mapping of 16 kDa subunit mutants in binding with p12I protein suggested that molecular determinants located between the second and third TM domain of the 16 kDa protein might be involved in this interaction. Finally, most of the p12I mutants lost the ability to potentiate transformation of C127 cells indicating that binding of p12I to the 16 kDa subunit does not directly correlate with oncogenicity.


Asunto(s)
Proteínas Oncogénicas Virales/metabolismo , ATPasas de Translocación de Protón/metabolismo , Factores de Transcripción , Animales , Secuencia de Bases , Transformación Celular Neoplásica , Células Cultivadas , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación/fisiología , Proteínas Oncogénicas Virales/genética , ATPasas de Translocación de Protón/química , Vacuolas/enzimología , Proteínas Reguladoras y Accesorias Virales
16.
J Virol ; 70(6): 3599-605, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8648694

RESUMEN

p12I is a small hydrophobic protein encoded by the human T-cell leukemia/lymphotropic virus type 1 (HTLV-1) that interacts with the 16-kDa component of the H+ vacuolar ATPase and cooperates with bovine papillomavirus 1 E5 oncoprotein in cell transformation. Just as an important step in E5 action appears to be its binding to the platelet-derived growth factor receptor, it was found that p12I binds specifically to both the beta and gamma(c) chains of the interleukin-2 receptor (IL-2R). The IL-2R beta and gamma(c) chains associated with p12I are endoglycosidase-H sensitive, suggesting that their interaction occurs in a pre-Golgi compartment. p12I stabilizes the immature forms of the IL-2R beta and gamma(c) chains and decreases their cell surface expression. The interactions of p12I with IL-2R beta and gamma(c) may have important implications in the immunosuppressive effect of HTLV-1 in vivo as well as in the ligand-independent HTLV-1-mediated T-cell proliferation.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano/química , Receptores de Interleucina-2/metabolismo , Proteínas de los Retroviridae/metabolismo , Aparato de Golgi/metabolismo , Infecciones por HTLV-I/inmunología , Células HeLa , Humanos , Receptores de Interleucina-2/análisis
17.
Blood ; 88(5): 1551-60, 1996 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-8781409

RESUMEN

Human T-cell lymphotropic/leukemia virus type I (HTLV-I) is associated with T-cell transformation both in vivo and in vitro. Although some of the mechanisms responsible for transformation remain unknown, increasing evidence supports a direct role of viral as well as dysregulated cellular proteins in transformation. We investigated the potential role of the tumor suppressor gene p53 and of the p53-regulated gene, p21waf1/cip1 (wild-type p53 activated fragment 1/cycling dependent kinases [cdks] interacting protein 1), in HTLV-I-infected T cells. We have found that the majority of HTLV-I-infected T cells have the wild-type p53 gene. However, its function in HTLV-I-transformed cells appears to be impaired, as shown by the lack of appropriate p53-mediated responses to ionizing radiation (IR). Interestingly, the expression of the p53 inducible gene, p21waf1/cip1, is elevated at the messenger ribonucleic acid and protein levels in all HTLV-I-infected T-cell lines examined as well as in Taxl-1, a human T-cell line stably expressing Tax. Additionally, Tax induces upregulation of a p21waf1/cip1 promoter-driven luciferase gene in p53 null cells, and increases p21waf1/cip1 expression in Jurkat T cells. These findings suggest that the Tax protein is at least partially responsible for the p53-independent expression of p21waf1/cip1 in HTLV-I-infected cells. Dysregulation of p53 and p21waf1/cip1 proteins regulating cell-cycle progression, may represent an important step in HTLV-I-induced T-cell transformation.


Asunto(s)
Ciclo Celular/fisiología , Transformación Celular Viral , Ciclinas/biosíntesis , Regulación Viral de la Expresión Génica , Virus Linfotrópico T Tipo 1 Humano/fisiología , Linfocitos T/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Secuencia de Bases , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/genética , Daño del ADN , Reparación del ADN , Regulación Viral de la Expresión Génica/efectos de la radiación , Productos del Gen tax/fisiología , Genes p53 , Humanos , Interleucina-2/farmacología , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Biosíntesis de Proteínas , Proteínas/genética , Linfocitos T/efectos de la radiación , Linfocitos T/virología , Proteinas GADD45
18.
J Virol ; 75(13): 6086-94, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11390610

RESUMEN

Human T-cell leukemia virus type 1 (HTLV-1) establishes a persistent infection in the host despite a vigorous virus-specific immune response. Here we demonstrate that an HTLV-1-encoded protein, p12(I), resides in the endoplasmic reticulum (ER) and Golgi and physically binds to the free human major histocompatibility complex class I heavy chains (MHC-I-Hc) encoded by the HLA-A2, -B7, and -Cw4 alleles. As a result of this interaction, the newly synthesized MHC-I-Hc fails to associate with beta(2)-microglobulin and is retrotranslocated to the cytosol, where it is degraded by the proteasome complex. Targeting of the free MHC-I-Hc, and not the MHC-I-Hc-beta(2)-microglobulin complex, by p12(I) represents a novel mechanism of viral interference and disrupts the intracellular trafficking of MHC-I, which results in a significant decrease in surface levels of MHC-I on human T-cells. These findings suggest that the interaction of p12(I) with MHC-1-Hc may interfere with antigen presentation in vivo and facilitate escape of HTLV-1-infected cells from immune recognition.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas Oncogénicas Virales/fisiología , Factores de Transcripción , Transporte Biológico , Cisteína Endopeptidasas/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Antígeno HLA-A2/metabolismo , Antígeno HLA-B7/metabolismo , Antígenos HLA-C/metabolismo , Células HeLa , Humanos , Complejos Multienzimáticos/fisiología , Complejo de la Endopetidasa Proteasomal , Proteínas Reguladoras y Accesorias Virales , Microglobulina beta-2/metabolismo
19.
J Virol ; 73(8): 6460-7, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10400740

RESUMEN

The HTLV-1 singly spliced open reading frame I protein, p12(I), is highly unstable and appears to be necessary for persistent infection in rabbits. Here we demonstrate that p12(I) forms dimers through two putative leucine zipper domains and that its stability is augmented by specific proteasome inhibitors. p12(I) is ubiquitylated, and mutations of its unique carboxy-terminus lysine residue to an arginine greatly enhance its stability. Interestingly, analysis of 53 independent HTLV-1 strains revealed that the natural p12(I) alleles found in ex vivo samples of tropical spastic paraparesis-HTLV-1-associated myelopathy patients contain a Lys at position 88 in some cases, whereas arginine is consistently found at position 88 in HTLV-1 strains from all adult T-cell leukemia-lymphoma (ATLL) cases and healthy carriers studied. This apparent segregation of different alleles in tropical spastic paraparesis-HTLV-associated myelopathy and ATLL or healthy carriers may be relevant in vivo, since p12(I) binds the interleukin-2 receptor beta and gammac chains, raising the possibility that the two natural alleles might affect differently the regulation of these molecules.


Asunto(s)
Alelos , Sustitución de Aminoácidos , Arginina/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/fisiología , Leucina Zippers , Leucemia-Linfoma de Células T del Adulto/virología , Lisina/genética , Proteínas Oncogénicas Virales/genética , Paraparesia Espástica Tropical/virología , Factores de Transcripción , Adulto , Secuencia de Aminoácidos , Arginina/metabolismo , Arginina/fisiología , Sitios de Unión , Portador Sano , Cisteína Endopeptidasas/metabolismo , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Lisina/metabolismo , Lisina/fisiología , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Proteínas Oncogénicas Virales/fisiología , Complejo de la Endopetidasa Proteasomal , Ubiquitinas , Proteínas Reguladoras y Accesorias Virales
20.
Virology ; 274(1): 86-93, 2000 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-10936091

RESUMEN

The mechanism of T-cell transformation by human T-cell lymphotropic virus type I (HTLV-I), though not completely understood, appears to involve the interactions of several viral and cellular proteins. One of these viral proteins, p12(I), encoded by HTLV-I orfI, is a weak oncogene that binds the 16-kDa subunit of the vacuolar ATPase and interacts with the immature beta and gamma(c) chains of the IL-2 receptor. We have expressed the singly spliced orfI cDNA in the baculovirus system and used the recombinant protein as a tool to assess the presence of antibodies in naturally or experimentally infected hosts. In addition, rabbit antisera were raised against various p12(I) synthetic peptides and used to identify three antigenic regions within p12(I), one between the two putative transmembrane regions of p12(I) and two at the carboxy-terminus of the protein. More importantly, sera from a naturally infected human (1 of 32) and experimentally infected rabbits (9 of 20) recognized the rp12(I), demonstrating orfI expression and immunogenicity in vivo. Taken together these data provide the first evidence of orfI expression during HTLV-I infections.


Asunto(s)
Anticuerpos Antideltaretrovirus/inmunología , Antígenos de Deltaretrovirus/inmunología , Virus Linfotrópico T Tipo 1 Humano/inmunología , Proteínas Oncogénicas Virales/inmunología , Factores de Transcripción , Secuencia de Aminoácidos , Animales , Línea Celular , Anticuerpos Antideltaretrovirus/sangre , Antígenos de Deltaretrovirus/genética , Modelos Animales de Enfermedad , Infecciones por HTLV-I/sangre , Infecciones por HTLV-I/inmunología , Células HeLa , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Datos de Secuencia Molecular , Proteínas Oncogénicas Virales/genética , Péptidos/inmunología , Pruebas de Precipitina , Conejos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Spodoptera/citología , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas Reguladoras y Accesorias Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA