Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Otolaryngol ; 143(11-12): 971-978, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38189322

RESUMEN

BACKGROUND: Thresholds of electrically evoked compound action potentials (TECAP) may serve as starting points for electrophysiologically based fitting of cochlear implants. Absent TECAP data at single electrodes reduces the number of data points available for fitting and can be substituted by interpolation of measured data points. AIM: To compare complete TECAP profiles with interpolated TECAP profiles of 5/22 (∼22.7%) and 11/22 (50%) electrode contacts. MATERIAL AND METHODS: Single-centre, retrospective, observational study of data from 624 ears implanted with a Slim Modiolar (CI ×32) or Contour Advance (CI ×12, CI24RE(CA)) electrode array (Cochlear Ltd). The deviation of the complete measured TECAP profile from the same profile with missing and therefore interpolated TECAP values was quantified. RESULTS: Interpolated TECAP profiles significantly differ from complete measured profiles especially at the basal and apical electrodes. Reference data for Slim Modiolar and Contour Advance electrodes mean profiles are provided. CONCLUSIONS AND SIGNIFICANCE: Reducing the number of measured TECAP electrodes has to be weighted against losses in the TECAP accuracy of interpolated values. A clinically acceptable compromise may be a reduction from 22 to 11 even non-equidistant data points. While reducing ECAP measurement time, it is accompanied by a minimal loss of accuracy of the TECAP threshold profile.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Potenciales Evocados Auditivos/fisiología , Estudios Retrospectivos , Cóclea , Potenciales de Acción/fisiología , Estimulación Eléctrica
2.
Laryngoscope Investig Otolaryngol ; 6(4): 807-815, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34401506

RESUMEN

OBJECTIVES: In clinical practice, characterization of speech comprehension for cochlear implant (CI) patients is typically administered by a set of suprathreshold measurements in quiet and in noise. This study investigates speech comprehension of the three most recent cochlear implant sound processors; CP810, CP910, and CP1000 (Cochlear Limited). To compare sound processor performance across generations and input dynamic range changes, the state-of-the art signal processing technologies available in each sound processor were enabled. Outcomes will be assessed across a range of stimulation intensities, and finally analyzed with respect to normal hearing listeners. METHODS: In a prospective study, 20 experienced postlingually deafened CI patients who received a Nucleus CI in the ENT department of the University Hospital of SH in Kiel were recruited. Speech comprehension was measured in quiet at 40, 50, and 65 dBSPL with monosyllabic words as well as by speech reception threshold for two-digit numbers. In noise, speech reception thresholds were measured with the adaptive German matrix test with speech and noise in front. RESULTS: We found that high levels of open-set speech comprehension are achieved at suprathreshold presentation levels in quiet. However, results at lower test levels have remained mostly unchanged for tested sound processors with default dynamic range. Expanding the lower limit of the acoustic input dynamic range yields better speech comprehension at lower presentation levels. In noise the application of ForwardFocus improves the speech reception. Overall, a continuous improvement for speech perception across three generations of CI sound processors was found. CONCLUSIONS: Findings motivate further development of signal pre-processing, an additional focus of clinical work on lower stimulation levels, and automation of ForwardFocus. LEVEL OF EVIDENCE: 2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA