RESUMEN
Cyclin-dependent kinase 5 regulates numerous neuronal functions with its activator, p35. Under neurotoxic conditions, p35 undergoes proteolytic cleavage to liberate p25, which has been implicated in various neurodegenerative diseases. Here, we show that p25 is generated following neuronal activity under physiological conditions in a GluN2B- and CaMKIIα-dependent manner. Moreover, we developed a knockin mouse model in which endogenous p35 is replaced with a calpain-resistant mutant p35 (Δp35KI) to prevent p25 generation. The Δp35KI mice exhibit impaired long-term depression and defective memory extinction, likely mediated through persistent GluA1 phosphorylation at Ser845. Finally, crossing the Δp35KI mice with the 5XFAD mouse model of Alzheimer's disease (AD) resulted in an amelioration of ß-amyloid (Aß)-induced synaptic depression and cognitive impairment. Together, these results reveal a physiological role of p25 production in synaptic plasticity and memory and provide new insights into the function of p25 in Aß-associated neurotoxicity and AD-like pathology.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Calpaína/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cognición , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Endocitosis , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Ratones , Proteínas del Tejido Nervioso/genética , Fosfotransferasas , Receptores de N-Metil-D-Aspartato/metabolismo , SinapsisRESUMEN
Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation.
Asunto(s)
Complejo Nuclear Basolateral/fisiopatología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/fisiopatología , Trastornos de la Memoria/fisiopatología , Animales , Complejo Nuclear Basolateral/efectos de la radiación , Hipocampo/efectos de la radiación , Luz , Ratones , Estrés FisiológicoRESUMEN
In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to study the impact of a distinct cell type in health and disease as well as performing therapeutic drug screens on a human genetic background. In particular, clinical trials for Alzheimer's disease (AD) have been failing. Two of the potential reasons are first, the species gap involved in proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying patient stratification, meaning subgrouping patients based on the disease severity due to the lack of phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our understanding of disease subtypes in AD. They allow researchers conducting in depth characterization of neural cells from both familial and sporadic AD patients as well as preclinical screens on human cells. In this review, we briefly outline the status quo of iPS cell research in neurological diseases along with the general advantages and pitfalls of these models. We summarize how genome-editing techniques such as CRISPR/Cas9 will allow researchers to reduce the problem of genomic variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then focus on current techniques for the differentiation of iPS cells into neural cell types that are relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture systems will be important for understanding AD phenotypes in a complex cellular milieu, and how both two- and three-dimensional iPS cell models can provide platforms for drug discovery and translational studies into the treatment of AD.
Asunto(s)
Enfermedad de Alzheimer/patología , Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/patología , Modelos BiológicosRESUMEN
Pervasive neuroinflammation occurs in many neurodegenerative diseases, including Alzheimer's disease (AD). SPI1/PU.1 is a transcription factor located at a genome-wide significant AD-risk locus and its reduced expression is associated with delayed onset of AD. We analyzed single-cell transcriptomic datasets from microglia of human AD patients and found an enrichment of PU.1-binding motifs in the differentially expressed genes. In hippocampal tissues from transgenic mice with neurodegeneration, we found vastly increased genomic PU.1 binding. We then screened for PU.1 inhibitors using a PU.1 reporter cell line and discovered A11, a molecule with anti-inflammatory efficacy and nanomolar potency. A11 regulated genes putatively by recruiting a repressive complex containing MECP2, HDAC1, SIN3A, and DNMT3A to PU.1 motifs, thus representing a novel mechanism and class of molecules. In mouse models of AD, A11 ameliorated neuroinflammation, loss of neuronal integrity, AD pathology, and improved cognitive performance. This study uncovers a novel class of anti-inflammatory molecules with therapeutic potential for neurodegenerative disorders.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neuroinflamatorias , Animales , Ratones , Humanos , Oncogenes , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Línea Celular , Modelos Animales de Enfermedad , Ratones TransgénicosRESUMEN
Epigenetic mechanisms regulate the interaction between the genome and the environment and have been implicated in the etiology of various brain diseases. One type of epigenetic modification, histone acetylation, is dynamically altered during memory formation. Histone acetylation is regulated by the activities of histone deacetylase (HDAC) and histone acetyltransferase enzymes. The use of HDAC inhibitors has emerged as a promising new strategy for the therapeutic intervention of neurodegenerative disease. We used a combination of pharmacological and mouse genetic approaches that allowed us to identify HDAC2 as a specific negative regulator of synaptic plasticity and memory formation. Our results suggest that HDAC inhibitors enhance cognitive function by inhibiting HDAC2, which renders HDAC2 target genes more accessible to transcriptional activators and coactivators recruited by neuronal activity stimulation. The data presented at the 2011 Barcelona ADPD Conference delineate a novel and important role for HDAC2 activity in the cognitive impairments associated with neurodegenerative disease.
Asunto(s)
Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Epigénesis Genética/genética , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/genética , Animales , Trastornos del Conocimiento/tratamiento farmacológico , Quinasa 5 Dependiente de la Ciclina/genética , Modelos Animales de Enfermedad , Histona Desacetilasa 2/genética , Inhibidores de Histona Desacetilasas/uso terapéutico , Ratones , Ratones Transgénicos , Modelos Moleculares , Mutación/genética , Proteínas del Tejido Nervioso/genética , FosfotransferasasRESUMEN
Astrocytes have the ability to modulate neuronal excitability and synaptic transmission by the release of gliotransmitters. The importance of ATP released downstream of the activation of Gq-coupled receptors has been well established, but the mechanisms by which this release is regulated are unclear. The current work reveals that the elevation of diacylglycerol (DAG) in astrocytes induces vesicular ATP release. Unexpectedly, DAG-induced ATP release was found to be independent of PKC activation, but dependent upon activation of a C1 domain-containing protein. Astrocytes express the C1 domain-containing protein Munc13-1, which has been implicated in neuronal transmitter release, and RNAi-targeted downregulation of Munc13-1 inhibits astrocytic ATP release. These studies demonstrate that elevations of DAG induce the exocytotic release of ATP in astrocytes, likely via a Munc13-1-dependent mechanism.
Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Diglicéridos/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Western Blotting , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Exocitosis/fisiología , Genes Reporteros , Inmunohistoquímica , Indicadores y Reactivos , Luciferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Proteínas del Tejido Nervioso/genética , Proteína Quinasa C/metabolismo , ARN Interferente Pequeño/farmacología , Receptores Purinérgicos P1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transmisión Sináptica/fisiologíaRESUMEN
Although the value of proteomics has been demonstrated, cost and scale are typically prohibitive, and gene expression profiling remains dominant for characterizing cellular responses to perturbations. However, high-throughput sentinel assays provide an opportunity for proteomics to contribute at a meaningful scale. We present a systematic library resource (90 drugs × 6 cell lines) of proteomic signatures that measure changes in the reduced-representation phosphoproteome (P100) and changes in epigenetic marks on histones (GCP). A majority of these drugs elicited reproducible signatures, but notable cell line- and assay-specific differences were observed. Using the "connectivity" framework, we compared signatures across cell types and integrated data across assays, including a transcriptional assay (L1000). Consistent connectivity among cell types revealed cellular responses that transcended lineage, and consistent connectivity among assays revealed unexpected associations between drugs. We further leveraged the resource against public data to formulate hypotheses for treatment of multiple myeloma and acute lymphocytic leukemia. This resource is publicly available at https://clue.io/proteomics.
Asunto(s)
Bases de Datos Factuales , Fosfoproteínas/efectos de los fármacos , Algoritmos , Línea Celular , Cromatografía Liquida , Conjuntos de Datos como Asunto , Regulación de la Expresión Génica , Código de Histonas , Humanos , Espectrometría de Masas , Fenómenos Farmacológicos y Toxicológicos , Fosfoproteínas/metabolismo , Proteómica , Transducción de Señal , Programas InformáticosRESUMEN
Thyroid transcription factor 1 (TTF1) [also known as Nkx2.1 (related to the NK-2 class of homeobox genes) and T/ebp (thyroid-specific enhancer-binding protein)], a homeodomain gene required for basal forebrain morphogenesis, remains expressed in the hypothalamus after birth, suggesting a role in neuroendocrine function. Here, we show an involvement of TTF1 in the control of mammalian puberty and adult reproductive function. Gene expression profiling of the nonhuman primate hypothalamus revealed that TTF1 expression increases at puberty. Mice in which the Ttf1 gene was ablated from differentiated neurons grew normally and had normal basal ganglia/hypothalamic morphology but exhibited delayed puberty, reduced reproductive capacity, and a short reproductive span. These defects were associated with reduced hypothalamic expression of genes required for sexual development and deregulation of a gene involved in restraining puberty. No extrapyramidal impairments associated with basal ganglia dysfunction were apparent. Thus, although TTF1 appears to fulfill only a morphogenic function in the ventral telencephalon, once this function is satisfied in the hypothalamus, TTF1 remains active as part of the transcriptional machinery controlling female sexual development.
Asunto(s)
Ganglios Basales/fisiología , Diferenciación Celular/genética , Eliminación de Gen , Neuronas/citología , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Reproducción/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Animales , Ganglios Basales/citología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Hipotálamo/citología , Hipotálamo/fisiología , Macaca mulatta , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas/fisiología , Proteínas Nucleares/deficiencia , Conducta Sexual Animal/fisiología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/deficienciaRESUMEN
Much has been learned in recent years about the central mechanisms controlling the initiation of mammalian puberty. It is now clear that this process requires the interactive participation of several genes. Using a combination of high throughput, molecular, and bioinformatics strategies, in combination with a system biology approach, we singled out from the hypothalamus of nonhuman primates and rats a group of related genes whose expression increases at the time of female puberty. Although these genes [henceforth termed tumor-related genes (TRGs)] have diverse cellular functions, they share the common feature of having been earlier identified as involved in tumor suppression/tumor formation. A prominent member of this group is KiSS1, a gene recently shown to be essential for the occurrence of puberty. Cis-regulatory analysis revealed the presence of a hierarchically arranged gene set containing five major hubs (CDP/CUTL1, MAF, p53, YY1, and USF2) controlling the network at the transcriptional level. In turn, these hubs are heavily connected to non-TRGs involved in the transcriptional regulation of the pubertal process. TRGs may be expressed in the mammalian hypothalamus as components of a regulatory gene network that facilitates and integrates cellular and cell-cell communication programs required for the acquisition of female reproductive competence.
Asunto(s)
Redes Reguladoras de Genes , Genes Relacionados con las Neoplasias , Hipotálamo/metabolismo , Maduración Sexual/genética , Regulación hacia Arriba , Región de Flanqueo 5' , Animales , Sitios de Unión , Femenino , Regulación del Desarrollo de la Expresión Génica , Macaca mulatta , Modelos Biológicos , Sistemas Neurosecretores/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/metabolismoRESUMEN
The initiation of mammalian puberty requires an increase in pulsatile release of GnRH from the hypothalamus. This increase is brought about by coordinated changes in transsynaptic and glial-neuronal communication. As the neuronal and glial excitatory inputs to the GnRH neuronal network increase, the transsynaptic inhibitory tone decreases, leading to the pubertal activation of GnRH secretion. The excitatory neuronal systems most prevalently involved in this process use glutamate and the peptide kisspeptin for neurotransmission/neuromodulation, whereas the most important inhibitory inputs are provided by gamma-aminobutyric acid (GABA)ergic and opiatergic neurons. Glial cells, on the other hand, facilitate GnRH secretion via growth factor-dependent cell-cell signaling. Coordination of this regulatory neuronal-glial network may require a hierarchical arrangement. One level of coordination appears to be provided by a host of unrelated genes encoding proteins required for cell-cell communication. A second, but overlapping, level might be provided by a second tier of genes engaged in specific cell functions required for productive cell-cell interaction. A third and higher level of control involves the transcriptional regulation of these subordinate genes by a handful of upper echelon genes that, operating within the different neuronal and glial subsets required for the initiation of the pubertal process, sustain the functional integration of the network. The existence of functionally connected genes controlling the pubertal process is consistent with the concept that puberty is under genetic control and that the genetic underpinnings of both normal and deranged puberty are polygenic rather than specified by a single gene. The availability of improved high-throughput techniques and computational methods for global analysis of mRNAs and proteins will allow us to not only initiate the systematic identification of the different components of this neuroendocrine network but also to define their functional interactions.
Asunto(s)
Sistema Endocrino/fisiología , Neuronas/metabolismo , Sistemas Neurosecretores , Pubertad , Biología de Sistemas/métodos , Animales , Comunicación Celular , ADN/metabolismo , Genes Supresores de Tumor , Hormona Liberadora de Gonadotropina/metabolismo , Sustancias de Crecimiento/metabolismo , Humanos , Hipotálamo/metabolismo , Kisspeptinas , Modelos Biológicos , Neuroglía/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas , ARN Mensajero/metabolismo , Transducción de Señal , Programas Informáticos , Sinapsis , Transcripción Genética , Proteínas Supresoras de TumorRESUMEN
Mammalian puberty requires activation of luteinizing hormone-releasing hormone (LHRH) neurons. In turn, these neurons are controlled by transsynaptic and glia-to-neuron communication pathways, which employ diverse cellular proteins for proper function. We have now used a high throughput relative quantitative proteomics technique to identify such proteins. We selected the method of two-dimensional liquid chromatography tandem mass spectrometry (2DLC-MS/MS) and cleavable isotope-coded affinity tags (cICAT), to both identify and quantify individual proteins within a complex protein mixture. The proteins used derived from the hypothalamus of juvenile (25-day-old) and peripubertal (first proestrus, LP) female rats, and their identity was established by analyzing their mass spectra via database searching. Five proteins involved in glutamate metabolism were detected and two of them appeared to be differentially expressed. They were selected for further analysis, because of their importance in controlling glutamate synthesis and degradation, and their preferential expression in astroglial cells. One, glutamate dehydrogenase (GDH) catalyzes glutamate synthesis; its hypothalamic content detected by 2DLC-MS/MS increases at first proestrus. The other, glutamine synthetase (GS), catalyzes the metabolism of glutamate to glutamine; its content decreases in proestrus. Western blot analysis verified these results. Because these changes suggested an increased glutamate production at puberty, we measured glutamate release from hypothalamic fragments from juvenile 29-day old rats, and from rats treated with PMSG to induce a premature proestrus surge of luteinizing hormone (LH). To determine the net output of glutamate in the absence of re-uptake we used the excitatory amino acid transporter (EAAT) inhibitor l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC). PDC elicited significantly more glutamate- and LHRH-release from the proestrus hypothalamus. Thus, an increase excitatory drive to the LHRH neuronal network provided by glutamatergic inputs of glial origin, is an event contributing to the pubertal activation of LHRH secretion.
Asunto(s)
Factores de Edad , Ácido Glutámico/metabolismo , Neuroglía/metabolismo , Proteómica/métodos , Maduración Sexual , Animales , Femenino , Perfilación de la Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Gonadotropinas Equinas/farmacología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
The dismal success rate of clinical trials for Alzheimer's disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD) patients harboring amyloid precursor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with ß- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD.
Asunto(s)
Enfermedad de Alzheimer/patología , Células Madre Pluripotentes Inducidas/fisiología , Péptidos beta-Amiloides/metabolismo , Encéfalo/citología , Encéfalo/patología , Línea Celular , Endosomas/patología , Humanos , Organoides/citología , Organoides/patología , Fenotipo , Fosforilación , Andamios del Tejido , Proteínas tau/metabolismoRESUMEN
Once generated, neurons are thought to permanently exit the cell cycle and become irreversibly differentiated. However, neither the precise point at which this post-mitotic state is attained nor the extent of its irreversibility is clearly defined. Here we report that newly born neurons from the upper layers of the mouse cortex, despite initiating axon and dendrite elongation, continue to drive gene expression from the neural progenitor tubulin α1 promoter (Tα1p). These observations suggest an ambiguous post-mitotic neuronal state. Whole transcriptome analysis of sorted upper cortical neurons further revealed that neurons continue to express genes related to cell cycle progression long after mitotic exit until at least post-natal day 3 (P3). These genes are however down-regulated thereafter, associated with a concomitant up-regulation of tumor suppressors at P5. Interestingly, newly born neurons located in the cortical plate (CP) at embryonic day 18-19 (E18-E19) and P3 challenged with calcium influx are found in S/G2/M phases of the cell cycle, and still able to undergo division at E18-E19 but not at P3. At P5 however, calcium influx becomes neurotoxic and leads instead to neuronal loss. Our data delineate an unexpected flexibility of cell cycle control in early born neurons, and describe how neurons transit to a post-mitotic state.
Asunto(s)
Corteza Cerebral/citología , Mitosis , Neuronas/citología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Calcio/farmacología , Diferenciación Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Ratones , Mitosis/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transcripción Genética/efectos de los fármacosRESUMEN
The activation of transforming growth factor alpha (TGFalpha)-erbB-1 and neuregulin-erbB-4 signaling pathways in hypothalamic astrocytes has been shown to play a key role in the process by which the neuroendocrine brain controls luteinizing hormone-releasing hormone (LHRH) secretion. Earlier studies suggested that tanycytes, an ependymoglial cell type of the median eminence, regulate LHRH release during the estrous cycle by undergoing plastic changes that alternatively allow or prevent direct access of the LHRH nerve terminals to the portal vasculature. Neither the molecules responsible for these plastic changes nor the underlying controlling mechanisms have been identified. Here we show that cultured tanycytes express erbB-1 and erbB-2, two of the four members of the erbB receptor family, and respond to TGFalpha with receptor phosphorylation, release of prostaglandin E2 (PGE2), and a PGE2-dependent increase in the release of TGFbeta1, a growth factor previously implicated in the glial control of LHRH secretion. Blockade of either erbB-1 receptor signal transduction or prostaglandin synthesis prevented the stimulatory effect of TGFalpha on both PGE2 and TGFbeta1 release. Time-lapse studies revealed that TGFalpha and TGFbeta1 have dramatically opposite effects on tanycyte plasticity. Whereas TGFalpha promotes tanycytic outgrowth, TGFbeta1 elicits retraction of tanycytic processes. Blockade of metalloproteinase activity abolished the effect of TGFbeta1, suggesting that TGFbeta1 induces tanycytic retraction by facilitating dissolution of the extracellular matrix. Prolonged (>12 hr) exposure of tanycytes to TGFalpha resulted in focal tanycytic retraction, an effect that was abolished by immunoneutralization of TGFbeta1 action, indicating that the retraction was attributable to TGFalpha-induced TGFbeta1 formation. These in vitro results identify tanycytes as targets of TGFalpha action and demonstrate that activation of erbB-1-mediated signaling in these cells results in plastic changes that, involving PGE2 and TGFbeta1 as downstream effectors, mimic the morphological plasticity displayed by tanycytes during the hours encompassing the preovulatory surge of LHRH.
Asunto(s)
Dinoprostona/biosíntesis , Epéndimo/metabolismo , Receptores ErbB/metabolismo , Eminencia Media/metabolismo , Proteínas del Tejido Nervioso , Factor de Crecimiento Transformador beta/biosíntesis , Animales , Antígenos de Diferenciación/biosíntesis , Astrocitos/citología , Astrocitos/metabolismo , Comunicación Celular/fisiología , Células Cultivadas , Fosfoproteína 32 Regulada por Dopamina y AMPc , Epéndimo/citología , Epéndimo/efectos de los fármacos , Hipotálamo/citología , Metaloproteinasas de la Matriz/metabolismo , Eminencia Media/citología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Fosfoproteínas/biosíntesis , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Crecimiento Transformador alfa/farmacología , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta1RESUMEN
Noncoding variants in the human MIR137 gene locus increase schizophrenia risk with genome-wide significance. However, the functional consequence of these risk alleles is unknown. Here we examined induced human neurons harboring the minor alleles of four disease-associated single nucleotide polymorphisms in MIR137. We observed increased MIR137 levels compared to those in major allele-carrying cells. microRNA-137 gain of function caused downregulation of the presynaptic target genes complexin-1 (Cplx1), Nsf and synaptotagmin-1 (Syt1), leading to impaired vesicle release. In vivo, miR-137 gain of function resulted in changes in synaptic vesicle pool distribution, impaired induction of mossy fiber long-term potentiation and deficits in hippocampus-dependent learning and memory. By sequestering endogenous miR-137, we were able to ameliorate the synaptic phenotypes. Moreover, reinstatement of Syt1 expression partially restored synaptic plasticity, demonstrating the importance of Syt1 as a miR-137 target. Our data provide new insight into the mechanism by which miR-137 dysregulation can impair synaptic plasticity in the hippocampus.
Asunto(s)
Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Plasticidad Neuronal/genética , Esquizofrenia/genética , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Alelos , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Fibroblastos , Sitios Genéticos , Células HEK293 , Humanos , Aprendizaje/fisiología , Potenciación a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Polimorfismo de Nucleótido Simple , Sinaptotagmina I/metabolismoRESUMEN
gamma-Aminobutyric acid (GABA) inhibits the embryonic migration of GnRH neurons and regulates hypothalamic GnRH release. A subset of GnRH neurons expresses GABA along their migratory route in the nasal compartment before entering the brain, suggesting that GABA produced by GnRH neurons may help regulate the migratory process. To examine this hypothesis and the possibility that persistence of GABA production by GnRH neurons may affect subsequent reproductive function, we generated transgenic mice in which the expression of glutamic acid decarboxylase-67 (GAD-67), a key enzyme in GABA synthesis, is targeted to GnRH neurons under the control of the GnRH gene promoter. On embryonic d 15, when GnRH neurons are still migrating, the transgenic animals had more GnRH neurons in aberrant locations in the cerebral cortex and fewer neurons reaching the hypothalamic-preoptic region, whereas migration into the brain was not affected. Hypothalamic GnRH content in mutant mice was low during the first week of postnatal life, increasing to normal values during infantile development (second week after birth) in the presence of increased pulsatile GnRH release. Consistent with these changes, serum LH and FSH levels were also elevated. Gonadotropin release returned to normal values by the time steroid negative feedback became established (fourth week of life). Ovariectomy at this time demonstrated an enhanced gonadotropin response in transgenic animals. Although the onset of puberty, as assessed by the age at vaginal opening and first ovulation, was not affected in the mutant mice, estrous cyclicity and adult reproductive capacity were disrupted. Mutant mice had reduced litter sizes, increased time intervals between deliveries of litters, and a shorter reproductive life span. Thus, GABA produced within GnRH neurons does not delay GnRH neuronal migration, but instead serves as a developmental cue that increases the positional diversity of these neurons within the basal forebrain. In addition, the results suggest that the timely termination of GABA production within the GnRH neuronal network is a prerequisite for normal reproductive function. The possibility arises that similar abnormalities in GABA homeostasis may contribute to syndromes of hypothalamic amenorrhea/oligomenorrhea in humans.
Asunto(s)
Movimiento Celular/fisiología , Glutamato Descarboxilasa/genética , Hormona Liberadora de Gonadotropina/metabolismo , Isoenzimas/genética , Neuronas/citología , Reproducción/fisiología , Animales , Animales Recién Nacidos , Ciclo Estral/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glutamato Descarboxilasa/metabolismo , Hipotálamo/citología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/fisiología , Isoenzimas/metabolismo , Ratones , Ratones Transgénicos , Neuronas/enzimología , Regiones Promotoras Genéticas/genética , Flujo Pulsátil , Ratas , Ácido gamma-Aminobutírico/biosíntesis , Ácido gamma-Aminobutírico/metabolismoRESUMEN
The induced pluripotent stem (iPS) cell field holds promise for in vitro disease modeling. However, identifying innate cellular pathologies, particularly for age-related neurodegenerative diseases, has been challenging. Here, we exploited mutation correction of iPS cells and conserved proteotoxic mechanisms from yeast to humans to discover and reverse phenotypic responses to α-synuclein (αsyn), a key protein involved in Parkinson's disease (PD). We generated cortical neurons from iPS cells of patients harboring αsyn mutations, who are at high risk of developing PD dementia. Genetic modifiers from unbiased screens in a yeast model of αsyn toxicity led to identification of early pathogenic phenotypes in patient neurons. These included nitrosative stress, accumulation of endoplasmic reticulum (ER)-associated degradation substrates, and ER stress. A small molecule identified in a yeast screen (NAB2), and the ubiquitin ligase Nedd4 it affects, reversed pathologic phenotypes in these neurons.
Asunto(s)
Bencimidazoles/farmacología , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Bencimidazoles/química , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Neurogénesis , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Ratas , alfa-Sinucleína/genéticaRESUMEN
We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication.
Asunto(s)
Astrocitos/citología , Moléculas de Adhesión Celular/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Inmunoglobulinas/metabolismo , Neuronas/citología , Secuencia de Aminoácidos , Animales , Astrocitos/metabolismo , Adhesión Celular , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/genética , Comunicación Celular , Línea Celular , Femenino , Inmunoglobulinas/genética , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de SeñalRESUMEN
Female sexual maturation requires erythroblastosis B (erbB)4 signaling in hypothalamic astrocytes; however, the mechanisms by which erbB4 contributes to this process are incompletely understood. Here we show that SynCAM1, a synaptic adhesion molecule with signaling capabilities, is not only expressed highly in neurons, but also in hypothalamic astrocytes and is functionally associated with erbB4 receptor activity. Whereas SynCAM1 expression is diminished in astrocytes with impaired erbB4 signaling, ligand-dependent activation of astroglial erbB4 receptors results in rapid association of erbB4 with SynCAM1 and activation of SynCAM1 gene transcription. To determine whether astrocytic SynCAM1-dependent intracellular signaling is required for normal female reproductive function, we generated transgenic mice that express in an astrocyte-specific manner a dominant-negative form of SynCAM1 lacking the intracellular domain. The mutant protein was correctly targeted to the cell membrane and was functionally viable as shown by its ability to block intracellular calcium/calmodulin-dependent serine protein kinase redistribution, a major SynCAM1-mediated event. Dominant-negative-SynCAM1 female mice had a delayed onset of puberty, disrupted estrous cyclicity, and reduced fecundity. These deficits were associated with a reduced capacity of neuregulin-dependent erbB4 receptor activation to elicit prostaglandin E2 release from astrocytes and GnRH release from the hypothalamus. We conclude that one of the mechanisms underlying erbB4 receptor-mediated facilitation of glial-neuronal interactions in the neuroendocrine brain involves SynCAM1-dependent signaling and that this interaction is required for normal female reproductive function.