Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pathol ; 261(1): 71-84, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37550801

RESUMEN

Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood. Here, we analyse matched cancer and normal tissue samples from 200 patients and verify that ST6GAL1 is upregulated in prostate cancer tissue. Using MALDI imaging mass spectrometry (MALDI-IMS), we identify larger branched α2,6 sialylated N-glycans that show specificity to prostate tumour tissue. We also monitored ST6GAL1 in plasma samples from >400 patients and reveal ST6GAL1 levels are significantly increased in the blood of men with prostate cancer. Using both in vitro and in vivo studies, we demonstrate that ST6GAL1 promotes prostate tumour growth and invasion. Our findings show ST6GAL1 introduces α2,6 sialylated N-glycans on prostate cancer cells and raise the possibility that prostate cancer cells can secrete active ST6GAL1 enzyme capable of remodelling glycans on the surface of other cells. Furthermore, we find α2,6 sialylated N-glycans expressed by prostate cancer cells can be targeted using the sialyltransferase inhibitor P-3FAX -Neu5Ac. Our study identifies an important role for ST6GAL1 and α2,6 sialylated N-glycans in prostate cancer progression and highlights the opportunity to inhibit abnormal sialylation for the development of new prostate cancer therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Próstata , Sialiltransferasas , Masculino , Humanos , Glicosilación , Polisacáridos/química , Polisacáridos/metabolismo , Reino Unido , beta-D-Galactósido alfa 2-6-Sialiltransferasa , Antígenos CD/metabolismo
2.
Glycobiology ; 33(12): 1155-1171, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37847613

RESUMEN

Aberrant glycosylation is a hallmark of cancer and is not just a consequence, but also a driver of a malignant phenotype. In prostate cancer, changes in fucosylated and sialylated glycans are common and this has important implications for tumor progression, metastasis, and immune evasion. Glycans hold huge translational potential and new therapies targeting tumor-associated glycans are currently being tested in clinical trials for several tumor types. Inhibitors targeting fucosylation and sialylation have been developed and show promise for cancer treatment, but translational development is hampered by safety issues related to systemic adverse effects. Recently, potent metabolic inhibitors of sialylation and fucosylation were designed that reach higher effective concentrations within the cell, thereby rendering them useful tools to study sialylation and fucosylation as potential candidates for therapeutic testing. Here, we investigated the effects of global metabolic inhibitors of fucosylation and sialylation in the context of prostate cancer progression. We find that these inhibitors effectively shut down the synthesis of sialylated and fucosylated glycans to remodel the prostate cancer glycome with only minor apparent side effects on other glycan types. Our results demonstrate that treatment with inhibitors targeting fucosylation or sialylation decreases prostate cancer cell growth and downregulates the expression of genes and proteins important in the trajectory of disease progression. We anticipate our findings will lead to the broader use of metabolic inhibitors to explore the role of fucosylated and sialylated glycans in prostate tumor pathology and may pave the way for the development of new therapies for prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Glicosilación , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Procesamiento Proteico-Postraduccional , Polisacáridos/metabolismo
3.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897761

RESUMEN

Prostate cancer is the most common cancer in men, and it is primarily driven by androgen steroid hormones. The glycosylation enzyme EDEM3 is controlled by androgen signalling and is important for prostate cancer viability. EDEM3 is a mannosidase that trims mannose from mis-folded glycoproteins, tagging them for degradation through endoplasmic reticulum-associated degradation. Here, we find that EDEM3 is upregulated in prostate cancer, and this is linked to poorer disease-free survival. Depletion of EDEM3 from prostate cancer cells induces an ER stress transcriptomic signature, and EDEM3 overexpression is cyto-protective against ER stressors. EDEM3 expression also positively correlates with genes involved in the unfolded protein response in prostate cancer patients, and its expression can be induced through exposure to radiation. Importantly, the overexpression of EDEM3 promotes radio-resistance in prostate cancer cells and radio-resistance can be reduced through depletion of EDEM3. Our data thus implicate increased levels of EDEM3 with a role in prostate cancer pathology and reveal a new therapeutic opportunity to sensitise prostate tumours to radiotherapy.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Neoplasias de la Próstata , Andrógenos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Masculino , Manosidasas/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , alfa-Manosidasa/metabolismo
4.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466384

RESUMEN

Aberrant glycosylation is a universal feature of cancer cells that can impact all steps in tumour progression from malignant transformation to metastasis and immune evasion. One key change in tumour glycosylation is altered core fucosylation. Core fucosylation is driven by fucosyltransferase 8 (FUT8), which catalyses the addition of α1,6-fucose to the innermost GlcNAc residue of N-glycans. FUT8 is frequently upregulated in cancer, and plays a critical role in immune evasion, antibody-dependent cellular cytotoxicity (ADCC), and the regulation of TGF-ß, EGF, α3ß1 integrin and E-Cadherin. Here, we summarise the role of FUT8 in various cancers (including lung, liver, colorectal, ovarian, prostate, breast, melanoma, thyroid, and pancreatic), discuss the potential mechanisms involved, and outline opportunities to exploit FUT8 as a critical factor in cancer therapeutics in the future.


Asunto(s)
Fucosiltransferasas/metabolismo , Neoplasias/metabolismo , Animales , Fucosa/metabolismo , Glicosilación , Humanos , Polisacáridos/metabolismo
5.
Int J Mol Sci ; 20(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893936

RESUMEN

Prostate cancer is the most commonly diagnosed malignancy in men, claiming over350,000 lives worldwide annually. Current diagnosis relies on prostate-specific antigen (PSA)testing, but this misses some aggressive tumours, and leads to the overtreatment of non-harmfuldisease. Hence, there is an urgent unmet clinical need to identify new diagnostic and prognosticbiomarkers. As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiplebiomarkers will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, andattention is now turning to minimally invasive liquid biopsies, which enable the analysis oftumour components in patient blood or urine. Effective diagnostics using liquid biopsies willrequire a multifaceted approach, and a recent high-profile review discussed combining multipleanalytes, including changes to the tumour transcriptome, epigenome, proteome, and metabolome.However, the concentration on genomics-based paramaters for analysing liquid biopsies ispotentially missing a goldmine. Glycans have shown huge promise as disease biomarkers, anddata suggests that integrating biomarkers across multi-omic platforms (including changes to theglycome) can improve the stratification of patients with prostate cancer. A wide range ofalterations to glycans have been observed in prostate cancer, including changes to PSAglycosylation, increased sialylation and core fucosylation, increased O-GlcNacylation, theemergence of cryptic and branched N-glyans, and changes to galectins and proteoglycans. In thisreview, we discuss the huge potential to exploit glycans as diagnostic and prognostic biomarkersfor prostate cancer, and argue that the inclusion of glycans in a multi-analyte liquid biopsy test forprostate cancer will help maximise clinical utility.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Polisacáridos/metabolismo , Neoplasias de la Próstata/metabolismo , Exosomas/metabolismo , Glicosilación , Humanos , Masculino , Antígeno Prostático Específico/metabolismo
6.
Hum Genet ; 136(9): 1143-1154, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28382513

RESUMEN

Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2ß increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Empalme del ARN , ARN Mensajero , ARN Neoplásico , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Humanos , Masculino , Ratones , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neoplasias de la Próstata/terapia , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina/biosíntesis , Factores de Empalme Serina-Arginina/genética
7.
Stem Cells ; 34(5): 1198-212, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26867034

RESUMEN

Reprogramming of somatic cells to the phenotypic state termed "induced pluripotency" is thought to occur through three consecutive stages: initiation, maturation, and stabilisation. The initiation phase is stochastic but nevertheless very important as it sets the gene expression pattern that permits completion of reprogramming; hence a better understanding of this phase and how this is regulated may provide the molecular cues for improving the reprogramming process. c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPKs) are stress activated MAPK kinases that play an essential role in several processes known to be important for successful completion of the initiation phase such as cellular proliferation, mesenchymal to epithelial transition (MET) and cell cycle regulation. In view of this, we postulated that manipulation of this pathway would have significant impacts on reprogramming of human fibroblasts to induced pluripotent stem cells. Accordingly, we found that key components of the JNK/SAPK signaling pathway increase expression as early as day 3 of the reprogramming process and continue to rise in reprogrammed cells throughout the initiation and maturation stages. Using both chemical inhibitors and RNA interference of MKK4, MKK7 and JNK1, we tested the role of JNK/SAPK signaling during the initiation stage of neonatal and adult fibroblast reprogramming. These resulted in complete abrogation of fully reprogrammed colonies and the emergence of partially reprogrammed colonies which disaggregated and were lost from culture during the maturation stage. Inhibition of JNK/SAPK signaling resulted in reduced cell proliferation, disruption of MET and loss of the pluripotent phenotype, which either singly or in combination prevented establishment of pluripotent colonies. Together these data provide new evidence for an indispensable role for JNK/SAPK signaling to overcome the well-established molecular barriers in human somatic cell induced reprogramming. Stem Cells 2016;34:1198-1212.


Asunto(s)
Reprogramación Celular , Fibroblastos/citología , Fibroblastos/enzimología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Adulto , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Ensayo de Unidades Formadoras de Colonias , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Recién Nacido , Mesodermo/citología , Modelos Biológicos , Inhibidores de Proteínas Quinasas/farmacología
8.
Int J Mol Sci ; 17(3): 275, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26927062

RESUMEN

Activation of an aberrant glycosylation pathway in cancer cells can lead to expression of the onco-foetal sialyl-Tn (sTn) antigen. STn is a truncated O-glycan containing a sialic acid α-2,6 linked to GalNAc α-O-Ser/Thr and is linked with an adverse outcome and poor prognosis in cancer patients. The biosynthesis of the sTn antigen has been linked to the expression of the sialytransferase ST6GalNAc1, and also to mutations in and loss of heterozygosity of the COSMC gene. sTn neo- or over-expression occurs in many types of epithelial cancer including gastric, colon, breast, lung, oesophageal, prostate and endometrial cancer. sTn is believed to be carried by a variety of glycoproteins and may influence protein function and be involved in tumour development. This review discusses how the role of sTn in cancer development and tumour cell invasiveness might be organ specific and occur through different mechanisms depending on each cancer type or subtype. As the sTn-antigen is expressed early in carcinogenesis targeting sTn in cancer may enable the targeting of tumours from the earliest stage.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Carcinoma/metabolismo , Animales , Antígenos de Carbohidratos Asociados a Tumores/genética , Carcinoma/diagnóstico , Carcinoma/genética , Humanos , Especificidad de Órganos
9.
BMC Cancer ; 15: 9, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25592066

RESUMEN

BACKGROUND: Androgens drive the onset and progression of prostate cancer (PCa) via androgen receptor (AR) signalling. The principal treatment for PCa is androgen deprivation therapy, although the majority of patients eventually develop a lethal castrate-resistant form of the disease, where despite low serum testosterone levels AR signalling persists. Advanced PCa often has hyper-activated RAS/ERK1/2 signalling thought to be due to loss of function of key negative regulators of the pathway, the details of which are not fully understood. METHODS: We recently carried out a genome-wide study and identified a subset of 226 novel androgen-regulated genes (PLOS ONE 6:e29088, 2011). In this study we have meta-analysed this dataset with genes and pathways frequently mutated in PCa to identify androgen-responsive regulators of the RAS/ERK1/2 pathway. RESULTS: We find the PTGER4 and TSPYL2 genes are up-regulated by androgen stimulation and the ADCY1, OPKR1, TRIB1, SPRY1 and PTPRR are down-regulated by androgens. Further characterisation of PTPRR protein in LNCaP cells revealed it is an early and direct target of the androgen receptor which negatively regulates the RAS/ERK1/2 pathway and reduces cell proliferation in response to androgens. CONCLUSION: Our data suggest that loss of PTPRR in clinical PCa is one factor that might contribute to activation of the RAS/ERK1/2 pathway.


Asunto(s)
Andrógenos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias de la Próstata/genética , Proteínas Tirosina Fosfatasas Clase 7 Similares a Receptores/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Proteínas Tirosina Fosfatasas Clase 7 Similares a Receptores/metabolismo , Receptores Androgénicos/metabolismo
10.
Commun Biol ; 7(1): 276, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448753

RESUMEN

Immune checkpoint blockade has yet to produce robust anti-cancer responses for prostate cancer. Sialyltransferases have been shown across several solid tumours, including breast, melanoma, colorectal and prostate to promote immune suppression by synthesising sialoglycans, which act as ligands for Siglec receptors. We report that ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3Gal1) levels negatively correlate with androgen signalling in prostate tumours. We demonstrate that ST3Gal1 plays an important role in modulating tumour immune evasion through the synthesises of sialoglycans with the capacity to engage the Siglec-7 and Siglec-9 immunoreceptors preventing immune clearance of cancer cells. Here, we provide evidence of the expression of Siglec-7/9 ligands and their respective immunoreceptors in prostate tumours. These interactions can be modulated by enzalutamide and may maintain immune suppression in enzalutamide treated tumours. We conclude that the activity of ST3Gal1 is critical to prostate cancer anti-tumour immunity and provide rationale for the use of glyco-immune checkpoint targeting therapies in advanced prostate cancer.


Asunto(s)
Feniltiohidantoína , Neoplasias de la Próstata , beta-Galactosida alfa-2,3-Sialiltransferasa , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Benzamidas/farmacología , Nitrilos , Ligandos
11.
EBioMedicine ; 104: 105163, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772281

RESUMEN

BACKGROUND: Bone metastasis is a common consequence of advanced prostate cancer. Bisphosphonates can be used to manage symptoms, but there are currently no curative treatments available. Altered tumour cell glycosylation is a hallmark of cancer and is an important driver of a malignant phenotype. In prostate cancer, the sialyltransferase ST6GAL1 is upregulated, and studies show ST6GAL1-mediated aberrant sialylation of N-glycans promotes prostate tumour growth and disease progression. METHODS: Here, we monitor ST6GAL1 in tumour and serum samples from men with aggressive prostate cancer and using in vitro and in vivo models we investigate the role of ST6GAL1 in prostate cancer bone metastasis. FINDINGS: ST6GAL1 is upregulated in patients with prostate cancer with tumours that have spread to the bone and can promote prostate cancer bone metastasis in vivo. The mechanisms involved are multi-faceted and involve modification of the pre-metastatic niche towards bone resorption to promote the vicious cycle, promoting the development of M2 like macrophages, and the regulation of immunosuppressive sialoglycans. Furthermore, using syngeneic mouse models, we show that inhibiting sialylation can block the spread of prostate tumours to bone. INTERPRETATION: Our study identifies an important role for ST6GAL1 and α2-6 sialylated N-glycans in prostate cancer bone metastasis, provides proof-of-concept data to show that inhibiting sialylation can suppress the spread of prostate tumours to bone, and highlights sialic acid blockade as an exciting new strategy to develop new therapies for patients with advanced prostate cancer. FUNDING: Prostate Cancer Research and the Mark Foundation For Cancer Research, the Medical Research Council and Prostate Cancer UK.


Asunto(s)
Neoplasias Óseas , Ácido N-Acetilneuramínico , Neoplasias de la Próstata , Sialiltransferasas , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Humanos , Sialiltransferasas/metabolismo , Sialiltransferasas/genética , Animales , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Ratones , Ácido N-Acetilneuramínico/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Antígenos CD/metabolismo , Polisacáridos/farmacología , Glicosilación , beta-D-Galactósido alfa 2-6-Sialiltransferasa
12.
Nucleic Acids Res ; 39(7): 2671-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21109536

RESUMEN

Cyclin E supports pre-replication complex (pre-RC) assembly, while cyclin A-associated kinase activates DNA synthesis. We show that cyclin E, but not A, is mounted upon the nuclear matrix in sub-nuclear foci in differentiated vertebrate cells, but not in undifferentiated cells or cancer cells. In murine embryonic stem cells, Xenopus embryos and human urothelial cells, cyclin E is recruited to the nuclear matrix as cells differentiate and this can be manipulated in vitro. This suggests that pre-RC assembly becomes spatially restricted as template usage is defined. Furthermore, failure to become restricted may contribute to the plasticity of cancer cells.


Asunto(s)
Ciclina E/metabolismo , Neoplasias/metabolismo , Matriz Nuclear/metabolismo , Transporte Activo de Núcleo Celular , Animales , Diferenciación Celular , Línea Celular Tumoral , Células Cultivadas , Humanos , Ratones , Transporte de Proteínas , Xenopus laevis
13.
Oncol Lett ; 25(4): 163, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36960185

RESUMEN

Prostate cancer (PCa) is one of the most prominent causes of cancer-related mortality in the male population. A highly impactful prognostic factor for patients diagnosed with PCa is the presence or absence of bone metastases. The formation of secondary tumours at the bone is the most commonly observed site for the establishment of PCa metastases and is associated with reduced survival of patients in addition to a cohort of life-debilitating symptoms, including mobility issues and chronic pain. Despite the prevalence of this disease presentation and the high medical relevance of bone metastases, the mechanisms underlying the formation of metastases to the bone and the understanding of what drives the osteotropism exhibited by prostate tumours remain to be fully elucidated. This lack of in-depth understanding manifests in limited effective treatment options for patients with advanced metastatic PCa and culminates in the low rate of survival observed for this sub-set of patients. The present review aims to summarise the most recent promising advances in the understanding of how and why prostate tumours metastasise to the bone, with the ultimate aim of highlighting novel treatment and prognostic targets, which may provide the opportunity to improve the diagnosis and treatment of patients with PCa with bone metastases.

14.
Oncogene ; 42(43): 3161-3168, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37752235

RESUMEN

Prostate cancer progression is connected to the activity of conventional oncogenes and tumour suppressors and driven by circulating steroid hormones. A key issue has been how to identify and care for aggressively developing prostate tumours. Here we discuss how expression of the splicing regulators ESRP1 and ESRP2, and how their role as "masterminds" of epithelial splicing patterns, have been identified as markers of aggressively proliferating prostate primary tumours. We suggest that the origin of prostate cancer within epithelial cells, and the subsequent association of ESRP1 and ESRP2 expression with more aggressive disease progression, identify ESRP1 and ESRP2 as lineage survival oncogenes. To move this field on in the future it will be important to identify the gene expression targets controlled by ESRP1/2 that regulate prostate cancer proliferation. Potential future therapies could be designed to target ESRP1 and ESRP2 protein activity or their regulated splice isoforms in aggressive prostate tumours. Design of these therapies is potentially complicated by the risk of producing a more mesenchymal splicing environment that might promote tumour metastasis.

15.
Sci Rep ; 13(1): 17031, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813880

RESUMEN

Prostate cancer is the most common cancer in men and a major cause of cancer related deaths worldwide. Nearly all affected men develop resistance to current therapies and there is an urgent need to develop new treatments for advanced disease. Aberrant glycosylation is a common feature of cancer cells implicated in all of the hallmarks of cancer. A major driver of aberrant glycosylation in cancer is the altered expression of glycosylation enzymes. Here, we show that GCNT1, an enzyme that plays an essential role in the formation of core 2 branched O-glycans and is crucial to the final definition of O-glycan structure, is upregulated in aggressive prostate cancer. Using in vitro and in vivo models, we show GCNT1 promotes the growth of prostate tumours and can modify the glycome of prostate cancer cells, including upregulation of core 2 O-glycans and modifying the O-glycosylation of secreted glycoproteins. Furthermore, using RNA sequencing, we find upregulation of GCNT1 in prostate cancer cells can alter oncogenic gene expression pathways important in tumour growth and metastasis. Our study highlights the important role of aberrant O-glycosylation in prostate cancer progression and provides novel insights regarding the mechanisms involved.


Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Glicosilación , Polisacáridos/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología
16.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077781

RESUMEN

The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different 'glycan coat' to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.

17.
Sci Rep ; 12(1): 13884, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974042

RESUMEN

Cysteine rich with epidermal growth factor (EGF)-like domains 2 (CRELD2) is an endoplasmic reticulum (ER) resident chaperone protein with calcium binding properties. CRELD2 is an ER-stress regulated gene that has been implicated in the pathogenesis of skeletal dysplasias and has been shown to play an important role in the differentiation of chondrocytes and osteoblasts. Despite CRELD2 having an established role in skeletal development and bone formation, its role in osteoclasts is currently unknown. Here we show for the first time that CRELD2 plays a novel role in trafficking transforming growth factor beta 1 (TGF-ß1), which is linked to an upregulation in the expression of Nfat2, the master regulator of osteoclast differentiation in early osteoclastogenesis. Despite this finding, we show that overexpressing CRELD2 impaired osteoclast differentiation due to a reduction in the activity of the calcium-dependant phosphatase, calcineurin. This in turn led to a subsequent block in the dephosphorylation of nuclear factor of activated T cells 1 (NFATc1), preventing its nuclear localisation and activation as a pro-osteoclastogenic transcription factor. Our exciting results show that the overexpression of Creld2 in osteoclasts impaired calcium release from the ER which is essential for activating calcineurin and promoting osteoclastogenesis. Therefore, our data proposes a novel inhibitory role for this calcium-binding ER-resident chaperone in modulating calcium flux during osteoclast differentiation which has important implications in our understanding of bone remodelling and the pathogenesis of skeletal diseases.


Asunto(s)
Calcio , Osteoclastos , Calcineurina/metabolismo , Calcio/metabolismo , Diferenciación Celular/fisiología , Retículo Endoplásmico/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Ligando RANK/metabolismo
18.
Clin Chim Acta ; 502: 167-173, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31870793

RESUMEN

While the development of immunotherapies for cancer treatment offer significant promise across several cancers, still only a small subset of patients respond to immune based monotherapies. As such, attention has turned to the development of combination therapies. These use conventional cancer treatments such as chemotherapy to sensitise tumours to immunotherapy. Here, we summarise key research, highlighting the exciting potential of tumour associated glycans as therapeutic targets to sensitise tumours to immunotherapy. When cells undergo carcinogenesis they reprogram their glyco-code. Several cancer associated glycans have been identified, and therapies targeting them are under development. Proteins containing carbohydrate binding domains (lectins) are expressed by many immune cell subtypes, and upon glycan binding, transduce immune modulatory signals that regulate the tumour immune microenvironment.


Asunto(s)
Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Polisacáridos/inmunología , Humanos , Neoplasias/patología , Microambiente Tumoral/inmunología
19.
Oncol Lett ; 17(3): 2569-2575, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30854032

RESUMEN

Pancreatic adenocarcinoma is a lethal disease with a 5-year survival rate of <5%, the lowest of all types of cancer. The diagnosis of pancreatic cancer relies on imaging and tissue biopsy, and the only curative therapy is complete surgical resection. Pancreatic cancer has the propensity to metastasise at an early stage and the majority of patients are diagnosed when surgery is no longer an option. Hence, there is an urgent need to identify biomarkers to enable early diagnosis, and to develop new therapeutic strategies. One approach for this involves targeting cancer-associated glycans. The most widely used serological marker in pancreatic cancer is the carbohydrate antigen CA 19-9 which contains a glycan known as sialyl Lewis A (sLeA). The CA 19-9 assay is used routinely to monitor response to treatment, but concerns have been raised about its sensitivity and specificity as a diagnostic biomarker. In addition to sLeA, a wide range of alterations to other important glycans have been observed in pancreatic cancer. These include increases in the sialyl Lewis X antigen (sLex), an increase in truncated O-glycans (Tn and sTn), increased branched and fucosylated N-glycans, upregulation of specific proteoglycans and galectins, and increased O-GlcNAcylation. Growing evidence supports crucial roles for glycans in all stages of cancer progression, and it is well established that glycans regulate tumour proliferation, invasion and metastasis. The present review describes the biological significance of glycans in pancreatic cancer, and discusses the clinical value of exploiting aberrant glycosylation to improve the diagnosis and treatment of this deadly disease.

20.
Medicines (Basel) ; 6(4)2019 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-31614918

RESUMEN

Cell surface carbohydrates (known as glycans) are often aberrantly expressed or found at atypical levels in cancer. Glycans can impact all steps in tumour progression, from malignant transformation to metastasis, and have roles in all the cancer hallmarks. An increased understanding of glycans in the metastatic cascade offers exciting new therapeutic opportunities. Glycan-based targeting strategies are currently being tested in clinical trials and are a rich and untapped frontier for development. As we learn more about cancer glycobiology, new targets will continue to emerge for drug design. One key change in tumour glycosylation is the upregulation of cancer-associated sialylated glycans. Abnormal sialylation is integral to tumour growth, metastasis and immune evasion; therefore, targeting sialic acid moieties in cancer could be of high therapeutic value. Here, we summarise the changes to sialic acid biology in cancer and discuss recent advances and technologies bringing sialic-acid targeting treatments to the forefront of cancer therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA