Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Cell ; 52(1): 37-51, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24076217

RESUMEN

The mechanisms that underlie and dictate the different biological outcomes of E2F-1 activity have yet to be elucidated. We describe the residue-specific methylation of E2F-1 by the asymmetric dimethylating protein arginine methyltransferase 1 (PRMT1) and symmetric dimethylating PRMT5 and relate the marks to different functional consequences of E2F-1 activity. Methylation by PRMT1 hinders methylation by PRMT5, which augments E2F-1-dependent apoptosis, whereas PRMT5-dependent methylation favors proliferation by antagonizing methylation by PRMT1. The ability of E2F-1 to prompt apoptosis in DNA damaged cells coincides with enhanced PRMT1 methylation. In contrast, cyclin A binding to E2F-1 impedes PRMT1 methylation and augments PRMT5 methylation, thus ensuring that E2F-1 is locked into its cell-cycle progression mode. The Tudor domain protein p100-TSN reads the symmetric methylation mark, and binding of p100-TSN downregulates E2F-1 apoptotic activity. Our results define an exquisite level of precision in the reader-writer interplay that governs the biological outcome of E2F-1 activity.


Asunto(s)
Apoptosis , Proliferación Celular , Factor de Transcripción E2F1/metabolismo , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Arginina , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Ciclina A/metabolismo , Daño del ADN , Factor de Transcripción E2F1/genética , Regulación de la Expresión Génica , Humanos , Metilación , Regiones Promotoras Genéticas , Unión Proteica , Proteína-Arginina N-Metiltransferasas/genética , Interferencia de ARN , Proteínas Represoras/genética , Transducción de Señal , Transcripción Genética , Transfección
2.
Nat Chem Biol ; 12(7): 539-45, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27214403

RESUMEN

Members of the KDM5 (also known as JARID1) family are 2-oxoglutarate- and Fe(2+)-dependent oxygenases that act as histone H3K4 demethylases, thereby regulating cell proliferation and stem cell self-renewal and differentiation. Here we report crystal structures of the catalytic core of the human KDM5B enzyme in complex with three inhibitor chemotypes. These scaffolds exploit several aspects of the KDM5 active site, and their selectivity profiles reflect their hybrid features with respect to the KDM4 and KDM6 families. Whereas GSK-J1, a previously identified KDM6 inhibitor, showed about sevenfold less inhibitory activity toward KDM5B than toward KDM6 proteins, KDM5-C49 displayed 25-100-fold selectivity between KDM5B and KDM6B. The cell-permeable derivative KDM5-C70 had an antiproliferative effect in myeloma cells, leading to genome-wide elevation of H3K4me3 levels. The selective inhibitor GSK467 exploited unique binding modes, but it lacked cellular potency in the myeloma system. Taken together, these structural leads deliver multiple starting points for further rational and selective inhibitor design.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Histona Demetilasas/metabolismo , Humanos , Modelos Moleculares , Mieloma Múltiple/patología , Conformación Proteica , Relación Estructura-Actividad
3.
Proc Natl Acad Sci U S A ; 111(31): 11341-6, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049398

RESUMEN

The retinoblastoma tumor suppressor protein pRb is a key regulator of cell cycle progression and mediator of the DNA damage response. Lysine methylation at K810, which occurs within a critical Cdk phosphorylation motif, holds pRb in the hypophosphorylated growth-suppressing state. We show here that methyl K810 is read by the tandem tudor domain containing tumor protein p53 binding protein 1 (53BP1). Structural elucidation of 53BP1 in complex with a methylated K810 pRb peptide emphasized the role of the 53BP1 tandem tudor domain in recognition of the methylated lysine and surrounding residues. Significantly, binding of 53BP1 to methyl K810 occurs on E2 promoter binding factor target genes and allows pRb activity to be effectively integrated with the DNA damage response. Our results widen the repertoire of cellular targets for 53BP1 and suggest a previously unidentified role for 53BP1 in regulating pRb tumor suppressor activity.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/metabolismo , Proteína de Retinoblastoma/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Senescencia Celular , Cromatina/metabolismo , Reparación del ADN , Humanos , Metilación , Ratones , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteína de Retinoblastoma/química , Proteína 1 de Unión al Supresor Tumoral P53
4.
EMBO J ; 31(7): 1785-97, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22327218

RESUMEN

E2F transcription factors are implicated in diverse cellular functions. The founding member, E2F-1, is endowed with contradictory activities, being able to promote cell-cycle progression and induce apoptosis. However, the mechanisms that underlie the opposing outcomes of E2F-1 activation remain largely unknown. We show here that E2F-1 is directly methylated by PRMT5 (protein arginine methyltransferase 5), and that arginine methylation is responsible for regulating its biochemical and functional properties, which impacts on E2F-1-dependent growth control. Thus, depleting PRMT5 causes increased E2F-1 protein levels, which coincides with decreased growth rate and associated apoptosis. Arginine methylation influences E2F-1 protein stability, and the enhanced transcription of a variety of downstream target genes reflects increased E2F-1 DNA-binding activity. Importantly, E2F-1 is methylated in tumour cells, and a reduced level of methylation is evident under DNA damage conditions that allow E2F-1 stabilization and give rise to apoptosis. Significantly, in a subgroup of colorectal cancer, high levels of PRMT5 frequently coincide with low levels of E2F-1 and reflect a poor clinical outcome. Our results establish that arginine methylation regulates the biological activity of E2F-1 activity, and raise the possibility that arginine methylation contributes to tumourigenesis by influencing the E2F pathway.


Asunto(s)
Arginina/metabolismo , Transformación Celular Neoplásica/metabolismo , Factor de Transcripción E2F1/metabolismo , Apoptosis , Línea Celular Tumoral , Regulación de la Expresión Génica , Humanos , Metilación , Proteína Metiltransferasas/metabolismo , Estabilidad Proteica , Proteína-Arginina N-Metiltransferasas
5.
Nature ; 468(7327): 1067-73, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-20871596

RESUMEN

Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.


Asunto(s)
Azirinas/farmacología , Dihidropiridinas/farmacología , Modelos Moleculares , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Azirinas/síntesis química , Azirinas/química , Sitios de Unión , Carcinoma de Células Escamosas/fisiopatología , Proteínas de Ciclo Celular , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatina/metabolismo , Dihidropiridinas/síntesis química , Dihidropiridinas/química , Femenino , Humanos , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Neoplasias Cutáneas/fisiopatología , Estereoisomerismo
6.
EMBO J ; 30(2): 317-27, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21119616

RESUMEN

As a critical target for cyclin-dependent kinases (Cdks), the retinoblastoma tumour suppressor protein (pRb) controls early cell cycle progression. We report here a new type of regulation that influences Cdk recognition and phosphorylation of substrate proteins, mediated through the targeted methylation of a critical lysine residue in the Cdk substrate recognition site. In pRb, lysine (K) 810 represents the essential and conserved basic residue (SPXK) required for cyclin/Cdk recognition and phosphorylation. Methylation of K810 by the methyltransferase Set7/9 impedes binding of Cdk and thereby prevents subsequent phosphorylation of the associated serine (S) residue, retaining pRb in the hypophosphorylated growth-suppressing state. Methylation of K810 is under DNA damage control, and methylated K810 impacts on phosphorylation at sites throughout the pRb protein. Set7/9 is required for efficient cell cycle arrest, and significantly, a mutant derivative of pRb that cannot be methylated at K810 exhibits compromised cell cycle arrest. Thus, the regulation of phosphorylation by Cdks reflects the combined interplay with methylation events, and more generally the targeted methylation of a lysine residue within a Cdk-consensus site in pRb represents an important point of control in cell cycle progression.


Asunto(s)
Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/metabolismo , Lisina/metabolismo , Modelos Moleculares , Proteína de Retinoblastoma/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Citometría de Flujo , Humanos , Immunoblotting , Inmunoprecipitación , Luciferasas , Espectrometría de Masas , Metilación , Fosforilación , Unión Proteica
7.
EMBO Rep ; 13(9): 811-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22836579

RESUMEN

The ubiquitin-like molecule NEDD8 modifies cullin-RING ubiquitin E3 ligases. NEDD8 has been shown to have a few additional substrates, but the extent to which this modification targets non-cullins and the functional significance of such modifications remain unclear. Here, we demonstrate that the cell-cycle-regulating transcription factor E2F-1 is a substrate for NEDD8 post-translational modification. NEDDylation results in decreased E2F-1 stability, lower transcriptional activity and slower cell growth. The lysine residues in E2F-1 targeted for NEDDylation can also be methylated, pointing to a possible interplay between these modifications. These results identify a new mode of E2F-1 regulation and highlight the emerging role of NEDD8 in regulating transcription factor stability and function.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Transcripción Genética , Ubiquitinación , Ubiquitinas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Factor de Transcripción E2F1/genética , Humanos , Lisina/metabolismo , Metilación , Proteína NEDD8 , Estabilidad Proteica , Ubiquitinas/genética
8.
Cell Death Dis ; 14(2): 93, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765032

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal type of cancer and the third leading cause of cancer death with the lowest 5-year survival rate. Heterogeneity, difficulty in diagnosis, and rapid metastatic progression are the causes of high mortality in pancreatic cancer. Recent studies have shown that Protein arginine methyltransferase 5 (PRMT5) is overexpressed in pancreatic cancers, and these patients have a worse prognosis. Recently, PRMT5 as an anti-cancer target has gained considerable interest. In this study, we investigated whether inhibition of PRMT5 activity was synergistic with blockade of TGF-ß1 signaling, which plays an important role in the construction of the desmoplastic matrix in pancreatic cancer and induces therapeutic vulnerability. Compared with T1-44, a selective inhibitor of PRMT5 activity, the combination of T1-44 with the TGF-ß1 signaling inhibitor Vactosertib significantly reduced tumor size and surrounding tissue invasion and significantly improved long-term survival. RNA sequencing analysis of mouse tumors revealed that the combination of T1-44 and Vactosertib significantly altered the expression of genes involved in cancer progression, such as cell migration, extracellular matrix, and apoptotic processes. In particular, the expression of Btg2, known as a tumor suppressor factor in various cancers, was markedly induced by combination treatment. Ectopic overexpression of Btg2 inhibited the EMT response, blocking cell migration, and promoted cancer cell death. These data demonstrate that the combination therapy of T1-44 with Vactosertib is synergistic for pancreatic cancer, suggesting that this novel combination therapy has value in the treatment strategy of patients with pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Línea Celular Tumoral , Neoplasias Pancreáticas
9.
Nat Commun ; 14(1): 1078, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841868

RESUMEN

Protein arginine methyltransferase (PRMT) 5 is over-expressed in a variety of cancers and the master transcription regulator E2F1 is an important methylation target. We have explored the role of PRMT5 and E2F1 in regulating the non-coding genome and report here a striking effect on long non-coding (lnc) RNA gene expression. Moreover, many MHC class I protein-associated peptides were derived from small open reading frames in the lncRNA genes. Pharmacological inhibition of PRMT5 or adjusting E2F1 levels qualitatively altered the repertoire of lncRNA-derived peptide antigens displayed by tumour cells. When presented to the immune system as either ex vivo-loaded dendritic cells or expressed from a viral vector, lncRNA-derived peptides drove a potent antigen-specific CD8 T lymphocyte response, which translated into a significant delay in tumour growth. Thus, lncRNA genes encode immunogenic peptides that can be deployed as a cancer vaccine.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias/genética , Neoplasias/terapia , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Péptidos/genética , Linfocitos T CD8-positivos , Proteína-Arginina N-Metiltransferasas
10.
J Neurochem ; 118(4): 596-610, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21668450

RESUMEN

Abnormal regulation of brain glycogen metabolism is believed to underlie insulin-induced hypoglycaemia, which may be serious or fatal in diabetic patients on insulin therapy. A key regulator of glycogen levels is glycogen targeted protein phosphatase 1 (PP1), which dephosphorylates and activates glycogen synthase (GS) leading to an increase in glycogen synthesis. In this study, we show that the gene PPP1R3F expresses a glycogen-binding protein (R3F) of 82.8 kDa, present at the high levels in rodent brain. R3F binds to PP1 through a classical 'RVxF' binding motif and substitution of Phe39 for Ala in this motif abrogates PP1 binding. A hydrophobic domain at the carboxy-terminus of R3F has similarities to the putative membrane binding domain near the carboxy-terminus of striated muscle glycogen targeting subunit G(M)/R(GL), and R3F is shown to bind not only to glycogen but also to membranes. GS interacts with PP1-R3F and is hyperphosphorylated at glycogen synthase kinase-3 sites (Ser640 and Ser644) when bound to R3F(Phe39Ala). Deprivation of glucose or stimulation with adenosine or noradrenaline leads to an increased phosphorylation of PP1-R3F bound GS at Ser640 and Ser644 curtailing glycogen synthesis and facilitating glycogen degradation to provide glucose in astrocytoma cells. Adenosine stimulation also modulates phosphorylation of R3F at Ser14/Ser18.


Asunto(s)
Astrocitoma/enzimología , Neoplasias Encefálicas/enzimología , Proteínas Portadoras/fisiología , Espacio Extracelular/fisiología , Glucosa/farmacología , Glucógeno Sintasa/biosíntesis , Fosfoproteínas Fosfatasas/fisiología , Proteína Fosfatasa 1/fisiología , Transducción de Señal/efectos de los fármacos , Adenosina/farmacología , Agonistas alfa-Adrenérgicos/farmacología , Secuencia de Aminoácidos , Animales , Astrocitoma/genética , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Neoplasias Encefálicas/genética , Proteínas Portadoras/genética , Línea Celular Tumoral , ADN/biosíntesis , ADN/genética , Glucógeno/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutagénesis , Norepinefrina/farmacología , Fosfoproteínas Fosfatasas/genética , Fosforilación , Proteína Fosfatasa 1/genética , ARN/biosíntesis , ARN/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
11.
Cell Death Dis ; 11(7): 572, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709847

RESUMEN

The pRb-E2F pathway is a critical point of regulation in the cell cycle and loss of control of the pathway is a hallmark of cancer. E2F1 is the major target through which pRb exerts its effects and arginine methylation by PRMT5 plays a key role in dictating E2F1 activity. Here we have explored the functional role of the PRMT5-E2F1 axis and highlight its influence on different aspects of cancer cell biology including viability, migration, invasion and adherence. Through a genome-wide expression analysis, we identified a distinct set of genes under the control of PRMT5 and E2F1, including some highly regulated genes, which influence cell migration, invasio and adherence through a PRMT5-dependent mechanism. Most significantly, a coincidence was apparent between the expression of PRMT5 and E2F1 in human tumours, and elevated levels of PRMT5 and E2F1 correlated with poor prognosis disease. Our results suggest a causal relationship between PRMT5 and E2F1 in driving the malignant phenotype and thereby highlight an important pathway for therapeutic intervention.


Asunto(s)
Movimiento Celular , Factor de Transcripción E2F1/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Proteína-Arginina N-Metiltransferasas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Movimiento Celular/genética , Cortactina/genética , Cortactina/metabolismo , Regulación hacia Abajo/genética , Factor de Transcripción E2F1/genética , Adhesiones Focales/metabolismo , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Humanos , Invasividad Neoplásica , Neoplasias/genética , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/genética , Transducción de Señal/genética
12.
Sci Adv ; 5(6): eaaw4640, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31249870

RESUMEN

E2F is a family of master transcription regulators involved in mediating diverse cell fates. Here, we show that residue-specific arginine methylation (meR) by PRMT5 enables E2F1 to regulate many genes at the level of alternative RNA splicing, rather than through its classical transcription-based mechanism. The p100/TSN tudor domain protein reads the meR mark on chromatin-bound E2F1, allowing snRNA components of the splicing machinery to assemble with E2F1. A large set of RNAs including spliced variants associate with E2F1 by virtue of the methyl mark. By focusing on the deSUMOylase SENP7 gene, which we identified as an E2F target gene, we establish that alternative splicing is functionally important for E2F1 activity. Our results reveal an unexpected consequence of arginine methylation, where reader-writer interplay widens the mechanism of control by E2F1, from transcription factor to regulator of alternative RNA splicing, thereby extending the genomic landscape under E2F1 control.


Asunto(s)
Arginina/genética , Factores de Transcripción E2F/genética , Empalme Alternativo/genética , Línea Celular , Cromatina/genética , Endopeptidasas/genética , Genómica , Humanos , Metilación , ARN/genética
13.
Cell Death Dis ; 9(5): 577, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29760477

RESUMEN

A prerequisite for protein synthesis is the transcription of ribosomal rRNA genes by RNA polymerase I (Pol I), which controls ribosome biogenesis. UBF (upstream binding factor) is one of the main Pol I transcription factors located in the nucleolus that activates rRNA gene transcription. E2F7 is an atypical E2F family member that acts as a transcriptional repressor of E2F target genes, and thereby contributes to cell cycle arrest. Here, we describe an unexpected role for E2F7 in regulating rRNA gene transcription. We have found that E2F7 localises to the perinucleolar region, and further that E2F7 is able to exert repressive effects on Pol I transcription. At the mechanistic level, this is achieved in part by E2F7 hindering UBF recruitment to the rRNA gene promoter region, and thereby reducing rRNA gene transcription, which in turn compromises global protein synthesis. Our results expand the target gene repertoire influenced by E2F7 to include Pol I-regulated genes, and more generally suggest a mechanism mediated by effects on Pol I transcription where E2F7 links cell cycle arrest with protein synthesis.


Asunto(s)
Factor de Transcripción E2F7/metabolismo , Biosíntesis de Proteínas , ARN Ribosómico/biosíntesis , Transcripción Genética , Puntos de Control del Ciclo Celular , Factor de Transcripción E2F7/genética , Humanos , Células MCF-7 , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética
14.
FEBS Lett ; 581(24): 4749-53, 2007 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-17870073

RESUMEN

The inhibition of hepatic glycogen-associated protein phosphatase-1 (PP1-G(L)) by glycogen phosphorylase a prevents the dephosphorylation and activation of glycogen synthase, suppressing glycogen synthesis when glycogenolysis is activated. Here, we show that a peptide ((280)LGPYY(284)) comprising the last five amino acids of G(L) retains high-affinity interaction with phosphorylase a and that the two tyrosines play crucial roles. Tyr284 deletion abolishes binding of phosphorylase a to G(L) and replacement by phenylalanine is insufficient to restore high-affinity binding. We show that a phosphorylase inhibitor blocks the interaction of phosphorylase a with the G(L) C-terminus, suggesting that the latter interaction could be targeted to develop an anti-diabetic drug.


Asunto(s)
Glucógeno Fosforilasa de Forma Hepática/metabolismo , Indoles/farmacología , Fenilbutiratos/farmacología , Tirosina/metabolismo , Secuencia de Aminoácidos , Animales , Calorimetría , Glucógeno Fosforilasa de Forma Hepática/química , Glucógeno Fosforilasa de Forma Hepática/genética , Humanos , Ratones , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Conejos , Ratas , Termodinámica , Volumetría , Tirosina/genética
15.
Mol Cell Oncol ; 4(6): e1360977, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209648

RESUMEN

The retinoblastoma protein (pRb) is considered to be one of the key regulators of cell proliferation. Here we describe our recent findings that linker histone H1.2 is an interaction partner for pRb and impacts upon the genome-wide chromatin binding properties of pRb. Consequently, H1.2 influences transcriptional repression and cell cycle control.

16.
Cell Death Differ ; 24(12): 2139-2149, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28841214

RESUMEN

The retinoblastoma tumour suppressor protein (pRb) classically functions to regulate early cell cycle progression where it acts to enforce a number of checkpoints in response to cellular stress and DNA damage. Methylation at lysine (K) 810, which occurs within a critical CDK phosphorylation site and antagonises a CDK-dependent phosphorylation event at the neighbouring S807 residue, acts to hold pRb in the hypo-phosphorylated growth-suppressing state. This is mediated in part by the recruitment of the reader protein 53BP1 to di-methylated K810, which allows pRb activity to be effectively integrated with the DNA damage response. Here, we report the surprising observation that an additional methylation-dependent interaction occurs at K810, but rather than the di-methyl mark, it is selective for the mono-methyl K810 mark. Binding of the mono-methyl PHF20L1 reader to methylated pRb occurs on E2F target genes, where it acts to mediate an additional level of control by recruiting the MOF acetyltransferase complex to E2F target genes. Significantly, we find that the interplay between PHF20L1 and mono-methyl pRb is important for maintaining the integrity of a pRb-dependent G1-S-phase checkpoint. Our results highlight the distinct roles that methyl-lysine readers have in regulating the biological activity of pRb.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Lisina/metabolismo , Proteína de Retinoblastoma/metabolismo , Ciclo Celular/fisiología , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Genes Supresores de Tumor , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Células MCF-7 , Metilación , Proteína de Retinoblastoma/genética , Transfección , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
17.
Cell Rep ; 19(11): 2193-2201, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28614707

RESUMEN

The retinoblastoma tumor suppressor protein pRb is a master regulator of cellular proliferation, principally through interaction with E2F and regulation of E2F target genes. Here, we describe the H1.2 linker histone as a major pRb interaction partner. We establish that H1.2 and pRb are found in a chromatin-bound complex on diverse E2F target genes. Interrogating the global influence of H1.2 on the genome-wide distribution of pRb indicated that the E2F target genes affected by H1.2 are functionally linked to cell-cycle control, consistent with the ability of H1.2 to hinder cell proliferation and the elevated levels of chromatin-bound H1-pRb complex, which occur in growth-arrested cells. Our results define a network of E2F target genes as susceptible to the regulatory influence of H1.2, where H1.2 augments global association of pRb with chromatin, enhances transcriptional repression by pRb, and facilitates pRb-dependent cell-cycle arrest.


Asunto(s)
Cromatina/genética , Genes Supresores de Tumor/fisiología , Histonas/genética , Proteína de Retinoblastoma/metabolismo , Retinoblastoma/genética , Puntos de Control del Ciclo Celular , Humanos , Transfección
18.
Cell Chem Biol ; 24(3): 371-380, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28262558

RESUMEN

Methylation of lysine residues on histone tail is a dynamic epigenetic modification that plays a key role in chromatin structure and gene regulation. Members of the KDM5 (also known as JARID1) sub-family are 2-oxoglutarate (2-OG) and Fe2+-dependent oxygenases acting as histone 3 lysine 4 trimethyl (H3K4me3) demethylases, regulating proliferation, stem cell self-renewal, and differentiation. Here we present the characterization of KDOAM-25, an inhibitor of KDM5 enzymes. KDOAM-25 shows biochemical half maximal inhibitory concentration values of <100 nM for KDM5A-D in vitro, high selectivity toward other 2-OG oxygenases sub-families, and no off-target activity on a panel of 55 receptors and enzymes. In human cell assay systems, KDOAM-25 has a half maximal effective concentration of ∼50 µM and good selectivity toward other demethylases. KDM5B is overexpressed in multiple myeloma and negatively correlated with the overall survival. Multiple myeloma MM1S cells treated with KDOAM-25 show increased global H3K4 methylation at transcriptional start sites and impaired proliferation.


Asunto(s)
Glicina/análogos & derivados , Histonas/metabolismo , Niacinamida/análogos & derivados , Proteína 2 de Unión a Retinoblastoma/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Glicina/química , Glicina/metabolismo , Glicina/farmacología , Células HeLa , Humanos , Estimación de Kaplan-Meier , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Metilación , Mieloma Múltiple/metabolismo , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , Niacinamida/química , Niacinamida/metabolismo , Niacinamida/farmacología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacología , Proteína 2 de Unión a Retinoblastoma/antagonistas & inhibidores , Proteína 2 de Unión a Retinoblastoma/genética , Sitio de Iniciación de la Transcripción
19.
Sci Adv ; 2(2): e1501257, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26989780

RESUMEN

Peptidyl arginine deiminase 4 (PAD4) is a nuclear enzyme that converts arginine residues to citrulline. Although increasingly implicated in inflammatory disease and cancer, the mechanism of action of PAD4 and its functionally relevant pathways remains unclear. E2F transcription factors are a family of master regulators that coordinate gene expression during cellular proliferation and diverse cell fates. We show that E2F-1 is citrullinated by PAD4 in inflammatory cells. Citrullination of E2F-1 assists its chromatin association, specifically to cytokine genes in granulocyte cells. Mechanistically, citrullination augments binding of the BET (bromodomain and extra-terminal domain) family bromodomain reader BRD4 (bromodomain-containing protein 4) to an acetylated domain in E2F-1, and PAD4 and BRD4 coexist with E2F-1 on cytokine gene promoters. Accordingly, the combined inhibition of PAD4 and BRD4 disrupts the chromatin-bound complex and suppresses cytokine gene expression. In the murine collagen-induced arthritis model, chromatin-bound E2F-1 in inflammatory cells and consequent cytokine expression are diminished upon small-molecule inhibition of PAD4 and BRD4, and the combined treatment is clinically efficacious in preventing disease progression. Our results shed light on a new transcription-based mechanism that mediates the inflammatory effect of PAD4 and establish the interplay between citrullination and acetylation in the control of E2F-1 as a regulatory interface for driving inflammatory gene expression.


Asunto(s)
Citrulina/metabolismo , Factor de Transcripción E2F1/química , Factor de Transcripción E2F1/metabolismo , Inflamación/metabolismo , Acetilación , Animales , Artritis Experimental/genética , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Citocinas/genética , Factor de Transcripción E2F1/genética , Regulación de la Expresión Génica , Células HL-60 , Humanos , Hidrolasas/antagonistas & inhibidores , Hidrolasas/genética , Hidrolasas/metabolismo , Inflamación/genética , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos DBA , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica , ARN Interferente Pequeño/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/metabolismo
20.
Diabetes ; 51(3): 591-8, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11872655

RESUMEN

Insulin has been previously shown to regulate the expression of the hepatic glycogen-targeting subunit, G(L), of protein phosphatase 1 (PP1) and is believed to control the activity of the PP1-G(L) complex by modulation of the level of phosphorylase a, which allosterically inhibits the activity of PP1-G(L). These mechanisms contribute to the ability of insulin to increase hepatic glycogen synthesis. Human G(L) shows >88% amino acid identity to its rat and mouse homologs, with complete conservation of the phosphorylase a binding site. G(L) is highly expressed in the liver and present at appreciable levels in heart tissue of all three species. Surprisingly, G(L) is highly expressed in human skeletal muscle while only being detected at very low levels in rat, mouse, and rabbit skeletal muscle. The amino acid sequence of G(L) predicted from the cDNA is identical in human liver and skeletal muscle and encoded by a gene on chromosome 8 at p23.1. The species-specific difference in the level of expression of G(L) mRNA and protein in skeletal muscle has important implications for understanding the mechanisms by which insulin regulates glycogen synthesis in human skeletal muscle and for questions regarding whether rodents are appropriate models for this purpose.


Asunto(s)
Expresión Génica , Glucógeno/metabolismo , Insulina/farmacología , Hígado/enzimología , Músculo Esquelético/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Adulto , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Biopsia , Mapeo Cromosómico , Cromosomas Humanos Par 8 , ADN/análisis , ADN/química , ADN Complementario/química , Biblioteca de Genes , Humanos , Immunoblotting , Hibridación Fluorescente in Situ , Masculino , Ratones , Datos de Secuencia Molecular , Músculo Esquelético/química , Reacción en Cadena de la Polimerasa , Proteína Fosfatasa 1 , ARN Mensajero , Ratas , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA