RESUMEN
BACKGROUND AND OBJECTIVES: Correct identification of estrogen receptor (ER) status in breast cancer (BC) is crucial to optimize treatment; however, standard of care, involving biopsy and immunohistochemistry (IHC), and other diagnostic tools such as 2-deoxy-2-[18F]fluoro-D-glucose or 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), can yield inconclusive results. 16α-[18F]fluoro-17ß-fluoroestradiol ([18F]FES) can be a powerful tool, providing high diagnostic accuracy of ER-positive disease. The aim of this study was to estimate the budget impact and cost-effectiveness of adding [18F]FES PET/CT to biopsy/IHC in the determination of ER-positive status in metastatic (mBC) and recurrent breast cancer (rBC) in the United States (US). METHODS: An Excel-based decision tree, combined with a Markov model, was developed to estimate the economic consequences of adding [18F]FES PET/CT to biopsy/IHC for determining ER-positive status in mBC and rBC over 5 years. Scenario A, where the determination of ER-positive status is carried out solely through biopsy/IHC, was compared to scenario B, where [18F]FES PET/CT is used in addition to biopsy/IHC. RESULTS: The proportion of true positive and true negative test results increased by 0.2 to 8.0 percent points in scenario B compared to scenario A, while re-biopsies were reduced by 94% to 100%. Scenario B resulted in cost savings up to 142 million dollars. CONCLUSIONS: Adding [18F]FES PET/CT to biopsy/IHC may increase the diagnostic accuracy of the ER status, especially when a tumor sample cannot be obtained, or the risk of a biopsy-related complication is high. Therefore, adding [18F]FES PET/CT to biopsy/IHC would have a positive impact on US clinical and economic outcomes.