Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nature ; 623(7985): 66-70, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37730995

RESUMEN

The chemistry of carbon is governed by the octet rule, which refers to its tendency to have eight electrons in its valence shell. However, a few exceptions do exist, for example, the trityl radical (Ph3C∙) (ref. 1) and carbocation (Ph3C+) (ref. 2) with seven and six valence electrons, respectively, and carbenes (R2C:)-two-coordinate octet-defying species with formally six valence electrons3. Carbenes are now powerful tools in chemistry, and have even found applications in material and medicinal sciences4. Can we undress the carbene further by removing its non-bonding electrons? Here we describe the synthesis of a crystalline doubly oxidized carbene (R2C2+), through a two-electron oxidation/oxide-ion abstraction sequence from an electron-rich carbene5. Despite a cumulenic structure and strong delocalization of the positive charges, the dicoordinate carbon centre maintains significant electrophilicity, and possesses two accessible vacant orbitals. A two-electron reduction/deprotonation sequence regenerates the parent carbene, fully consistent with its description as a doubly oxidized carbene. This work demonstrates that the use of bulky strong electron-donor substituents can simultaneously impart electronic stabilization and steric protection to both vacant orbitals on the central carbon atom, paving the way for the isolation of a variety of doubly oxidized carbenes.

2.
J Am Chem Soc ; 145(4): 2064-2069, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649656

RESUMEN

Carbenes, once considered laboratory curiosities, now serve as powerful tools in the chemical and material sciences. To date, all stable singlet carbenes are single-site ambiphiles. Here we describe the synthesis of a carbene which is a carbon-based dual ambiphile (both single-site and dual-site). The key is to employ imino substituents derived from a cyclic (alkyl)(amino)carbene (CAAC), which imparts a 1,3-dipolar character to the carbene. Its dual ambiphilic nature is consistent with the ability to activate simple organic molecules in both 1,1- and 1,3-fashion. Furthermore, its 1,3-ambiphilicity facilitates an unprecedented reversible intramolecular dearomative [3 + 2] cycloaddition with a proximal arene substituent, giving the carbene the ability to "mask" itself as an air-stable cycloadduct. We perceive that the concept of dual ambiphilicity opens a new dimension for future carbene chemistry, expanding the repertoire of applications beyond that known for classical single-site ambiphilic carbenes.

3.
J Am Chem Soc ; 145(2): 873-887, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36583993

RESUMEN

As key intermediates in metal-catalyzed nitrogen-transfer chemistry, terminal imido complexes of iron have attracted significant attention for a long time. In search of versatile model compounds, the recently developed second-generation N-anchored tris-NHC chelating ligand tris-[2-(3-mesityl-imidazole-2-ylidene)-methyl]amine (TIMMNMes) was utilized to synthesize and compare two series of mid- to high-valent iron alkyl imido complexes, including a reactive Fe(V) adamantyl imido intermediate en route to an isolable Fe(V) nitrido complex. The chemistry toward the iron adamantyl imides was achieved by reacting the Fe(I) precursor [(TIMMNMes)FeI(N2)]+ (1) with 1-adamantyl azide to yield the corresponding trivalent iron imide. Stepwise chemical reduction and oxidation lead to the isostructural series of low-spin [(TIMMNMes)Fe(NAd)]0,1+,2+,3+ (2Ad-5Ad) in oxidation states II to V. The Fe(V) imide [(TIMMNMes)Fe(NAd)]3+ (5Ad) is unstable under ambient conditions and converts to the air-stable nitride [(TIMMNMes)FeV(N)]2+ (6) via N-C bond cleavage. The stability of the pentavalent imide can be increased by derivatizing the nitride [(TIMMNMes)FeIV(N)]+ (7) with an ethyl group using the triethyloxonium salt Et3OPF6. This gives access to the analogous series of ethyl imides [(TIMMNMes)Fe(NEt)]0,1+,2+,3+ (2Et-5Et), including the stable Fe(V) ethyl imide. Iron imido complexes exist in a manifold of different electronic structures, ultimately controlling their diverse reactivities. Accordingly, these complexes were characterized by single-crystal X-ray diffraction analyses, SQUID magnetization, and electrochemical methods, as well as 57Fe Mössbauer, IR vibrational, UV/vis electronic absorption, multinuclear NMR, X-band EPR, and X-ray absorption spectroscopy. Our studies are complemented with quantum chemical calculations, thus providing further insight into the electronic structures of all complexes.


Asunto(s)
Hierro , NAD , Hierro/química , Modelos Moleculares , Oxidación-Reducción , Imidas/química
4.
J Am Chem Soc ; 145(25): 13650-13662, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37310290

RESUMEN

The synthesis, characterization, and reactivity of a series of cobalt terminal imido complexes supported by an N-anchored tripodal tris(carbene) chelate is described, including a Co-supported singlet nitrene. Reaction of the CoI precursor [(TIMMNmes)CoI](PF6) (TIMMNmes = tris-[2-(3-mesityl-imidazolin-2-ylidene)-methyl]amine) with p-methoxyphenyl azide yields a CoIII imide [(TIMMNmes)CoIII(NAnisole)](PF6) (1). Treatment of 1 with 1 equiv of [FeCp2](PF6) at -35 °C affords a formal CoIV imido complex [(TIMMNmes)Co(NAnisole)](PF6)2 (2), which features a bent Co-N(imido)-C(Anisole) linkage. Subsequent one-electron oxidation of 2 with 1 equiv of AgPF6 provides access to the tricationic cobalt imido complex [(TIMMNmes)Co(NAnisole)](PF6)3 (3). All complexes were fully characterized, including single-crystal X-ray diffraction (SC-XRD) analyses, infrared (IR) vibrational, ultraviolet/visible (UV/vis) electronic absorption, multinuclear NMR, X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and high-energy-resolution fluorescence-detected X-ray absorption spectroscopy (HERFD XAS). Quantum chemical calculations provide additional insight into the electronic structures of all compounds. The dicationic CoIV imido complex 2 exhibits a doublet ground state with considerable imidyl character as a result of covalent Co-NAnisole bonding. At room temperature, 2 readily converts to a CoII amine complex involving intramolecular C-H bond amination. Electronically, tricationic complex 3 can be understood as a singlet nitrene bound to CoIII with significant CoIV imidyl radical character. Verifying the pronounced electrophilicity, nucleophiles such as H2O and tBuNH2 add to 3─analogous to the parent free nitrene─in the para position of the aromatic substituent, thus, clearly corroborating singlet nitrene-type reactivity.

5.
Chemistry ; 29(64): e202302063, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37615237

RESUMEN

Dihydrogen evolution was observed in a two-step protonation reaction starting from a Ni0 precursor with a tripodal N-heterocyclic carbene (NHC) ligand. Upon the first protonation, a NiII monohydride complex was formed, which was isolated and fully characterized. Subsequent protonation yields H2 via a transient intermediate (INT) and an isolable NiII acetonitrile complex. The latter can be reduced to regenerate its Ni0 precursor. The mechanism of H2 formation was investigated by using a deuterated acid and scrutinized by 1 H NMR spectroscopy and gas chromatography. Remarkably, the second protonation forms a rare nickel dihydrogen complex, which was detected and identified in solution and characterized by 1 H NMR spectroscopy. DFT-based computational analyses were employed to propose a reaction profile and a molecular structure of the Ni-H2 complex. Thus, a dihydrogen-evolving, closed-synthetic cycle is reported with a rare Ni-H2 species as a key intermediate.

6.
Angew Chem Int Ed Engl ; 62(34): e202307352, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37319123

RESUMEN

The C-C bond formation between C1 molecules plays an important role in chemistry as manifested by the Fischer-Tropsch (FT) process. Serving as models for the FT process, we report here the reactions between a neutral AlI complex (Me NacNac)Al (1, Me NacNac=HC[(CMe)(NDipp)]2 , Dipp=2,6-diisopropylphenyl) and various isocyanides. The step-by-step coupling mechanism was studied in detail by low-temperature NMR monitoring, isotopic labeling, as well as quantum chemical calculations. Three different products were isolated in reaction of 1 with the sterically encumbered 2,6-bis(benzhydryl)-4-Me-phenyl isocyanide (BhpNC). These products substantiate carbene intermediates. The reaction between 1 and adamantyl isocyanide (AdNC) generated a trimerization product, and a corresponding carbene intermediate could be trapped in the form of a molybdenum(0) complex. Tri-, tetra-, and even pentamerization products were isolated with the sterically less congested phenyl and p-methoxyphenyl isocyanides (PhNC and PMPNC) with concurrent construction of quinoline or indole heterocycles. Overall, this study provides evidence for carbene intermediates in FT-type chemistry of aluminium(I) and isocyanides.

7.
Angew Chem Int Ed Engl ; 62(51): e202311749, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37815099

RESUMEN

Here we report the use of a base metal complex [(tBu pyrpyrr2 )Fe(OEt2 )] (1-OEt2 ) (tBu pyrpyrr2 2- =3,5-tBu2 -bis(pyrrolyl)pyridine) as a catalyst for intermolecular amination of Csp3 -H bonds of 9,10-dihydroanthracene (2 a) using 2,4,6-trimethyl phenyl azide (3 a) as the nitrene source. The reaction is complete within one hour at 80 °C using as low as 2 mol % 1-OEt2 with control in selectivity for single C-H amination versus double C-H amination. Catalytic C-H amination reactions can be extended to other substrates such as cyclohexadiene and xanthene derivatives and can tolerate a variety of aryl azides having methyl groups in both ortho positions. Under stoichiometric conditions the imido radical species [(tBu pyrpyrr2 )Fe{=N(2,6-Me2 -4-tBu-C6 H2 )] (1-imido) can be isolated in 56 % yield, and spectroscopic, magnetometric, and computational studies confirmed it to be an S = 1 FeIV complex. Complex 1-imido reacts with 2 a to produce the ferrous aniline adduct [(tBu pyrpyrr2 )Fe{NH(2,6-Me2 -4-tBu-C6 H2 )(C14 H11 )}] (1-aniline) in 45 % yield. Lastly, it was found that complexes 1-imido and 1-aniline are both competent intermediates in catalytic intermolecular C-H amination.

8.
Angew Chem Int Ed Engl ; 62(33): e202305404, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37221132

RESUMEN

Organic circularly polarized luminescence (CPL)-active molecular emitters featuring dynamic propeller-like luminophores were prepared in one step from cyclic(alkyl)(amino) carbenes (CAACs). These molecules exhibit through-space arene-arene π-delocalization and rapid intramolecular inter-system crossing (ISC) in line with their helical character.

9.
J Am Chem Soc ; 144(20): 8897-8901, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35575699

RESUMEN

Whereas triplet-nitrene complexes of the late transition metals are isolable and key intermediates in catalysis, singlet-nitrene ligands remain elusive. Herein we communicate three such palladium terminal imido complexes with singlet ground states. UV-vis-NIR electronic spectroscopy with broad bands up to 1400 nm as well as high-level computations (DFT, STEOM-CCSD, CASSCF/NEVPT2, EOS analysis) and reactivity studies suggest significant palladium(0) singlet-nitrene character. Although the aliphatic nitrene complexes proved to be too reactive for isolation in analytically pure form as a result of elimination of isobutylene, the aryl congener could be characterized by SC-XRD, elemental analysis, IR-, NMR spectroscopy, and HRMS. The complexes' distinguished ambiphilicity allows them to activate hexafluorobenzene, triphenylphosphine, and pinacol borane, catalytically dehydrogenate cyclohexene, and aminate ethylene via nitrene transfer at or below room temperature.


Asunto(s)
Iminas , Paladio , Catálisis , Iminas/química , Ligandos
10.
Chemistry ; 28(41): e202200269, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35302682

RESUMEN

We report high-valent iron complexes supported by N-heterocyclic carbene (NHC)-anchored, bis-phenolate pincer ligands that undergo ligand-to-metal charge transfer (LMCT) upon photoexcitation. The resulting excited states - with a lifetime in the picosecond range - feature a ligand-based, mixed-valence system and intense intervalence charge transfer bands in the near-infrared region. Upon oxidation of the complex, corresponding intervalence charge transfer absorptions are also observed in the ground state. We suggest that the spectroscopic hallmarks of such LMCT states provide useful tools to decipher excited-state decay mechanisms in high-valent NHC complexes. Our observations further indicate that NHC-anchored, bis-phenolate pincer ligands are not sufficiently strong donors to prevent the population of excited metal-centered states in high-valent iron complexes.


Asunto(s)
Metano , Fenoles , Cristalografía por Rayos X , Hierro , Ligandos , Metano/análogos & derivados
11.
Inorg Chem ; 61(3): 1236-1248, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34990121

RESUMEN

Oxidative addition of 1.5 equiv of bromine or iodine to a Ir(I) sulfoxide pincer complex affords the corresponding Ir(IV) tris-bromido or tris-iodido complexes, respectively. The unprecedented trap-free reductive elimination of iodine from the Ir(IV)-iodido complex is induced by coordination of ligands or donor solvents. In the case of added I-, the isostructural tris-iodo Ir(III)-ate complex is quickly generated, which then can be readily reoxidized to the Ir(IV)-iodido complex with FcPF6 or electrochemically. DFT calculations indicate an "inverted ligand field" in the Ir(IV) complexes and favor dinuclear pathways for the reductive elimination of iodine from the formal d5 metal center.

12.
Chem Soc Rev ; 50(5): 3485-3518, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33496309

RESUMEN

Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states. As such, it constitutes an exciton multiplication generation process, which is currently at the focal point for future integration into solar energy conversion devices. Beyond this, various other exciting applications were proposed, including quantum cryptography or organic light emitting diodes. Also, the mechanistic understanding evolved rapidly during the last year. Unfortunately, the number of suitable SF-chromophores is still limited. This is per se problematic, considering the wide range of envisaged applicability. With that in mind, we emphasize uncommon SF-scaffolds and outline requirements as well as strategies to expand the chromophore pool of SF-materials.

13.
Angew Chem Int Ed Engl ; 61(37): e202206390, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35796423

RESUMEN

Carbenes, including N-heterocyclic carbene (NHC) ligands, are used extensively to stabilize open-shell transition metal complexes and organic radicals. Yet, it remains unknown, which carbene stabilizes a radical well and, thus, how to design radical-stabilizing C-donor ligands. With the large variety of C-donor ligands experimentally investigated and their electronic properties established, we report herein their radical-stabilizing effect. We show that radical stabilization can be understood by a captodative frontier orbital description involving π-donation to- and π-donation from the carbenes. This picture sheds a new perspective on NHC chemistry, where π-donor effects usually are assumed to be negligible. Further, it allows for the intuitive prediction of the thermodynamic stability of covalent radicals of main group- and transition metal carbene complexes, and the quantification of redox non-innocence.

14.
Angew Chem Int Ed Engl ; 61(36): e202206848, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35674679

RESUMEN

Reaction of the CoI complex [(TIMMNmes )CoI ](PF6 ) (1) (TIMMNmes =tris-[2-(3-mesityl-imidazolin-2-ylidene)-methyl]amine) with mesityl azide yields the CoIII imide [(TIMMNmes )CoIII (NMes)](PF6 ) (2). Oxidation of 2 with [FeCp2 ](PF6 ) provides access to a rare CoIII imidyl [(TIMMNmes )Co(NMes)](PF6 )2 (3). Single-crystal X-ray diffractometry and EPR spectroscopy confirm the molecular structure of 3 and its S= 1 / 2 ground state. ENDOR, X-ray absorption spectroscopy and computational analyses indicate a ligand-based oxidation; thus, an imidyl-radical electronic structure for 3. Migratory insertion of one ancillary NHC to the imido ligand in 2 gives the CoI N-heterocyclic imine (4) within 12 h. Conversely, it takes merely 0.5 h for 3 to transform to the CoII congener (5). The migratory insertion in 2 occurs via a nucleophilic attack of the imido ligand at the NHC to give 4, whereas in 3, a nucleophilic attack of the NHC at the electrophilic imidyl ligand yields 5. The reactivity shunt upon oxidation of 2 to 3 confirms an umpolung of the imido ligand.

15.
J Am Chem Soc ; 143(41): 17219-17225, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34613738

RESUMEN

Iron methylidene species are alleged intermediates in the Fischer-Tropsch process and in olefin cyclopropanation, yet iron methylidene complexes with unambiguously established molecular and electronic structures remain elusive. In this study, we characterize an iron terminal methylidene complex by single-crystal X-ray diffractometry (scXRD), CHN combustion elemental analysis, 1H/13C/31P/1H-13C NMR, and zero-field 57Fe Mössbauer spectroscopy and study its reactivity. A series of closely related complexes in different oxidation states were synthesized, isolated and characterized in order to validate the electronic structure of the title methylidene complex. The computational analysis substantiates the proposed Fischer-type electronic description while emphasizing high Fe═CH2 bond covalency, considerable double bond order, and thus, substantial alkylidene character.

16.
Chemistry ; 27(67): 16760-16767, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34569676

RESUMEN

Carbonyl and iminyl based radical anions are reactive intermediates in a variety of transformations in organic synthesis. Herein, the isolation of ketyl, and more importantly unprecedented ketiminyl and aldiminyl radical anions coordinated to cobalt and iron complexes is presented. Insights into the electronic structure of these unusual metal bound radical anions is provided by X-Ray diffraction analysis, NMR, IR, UV/Vis and Mössbauer spectroscopy, solid and solution state magnetometry, as well as a by a detailed computational analysis. The metal bound radical anions are very reactive and facilitate the activation of intra- and intermolecular C-H bonds.

17.
Inorg Chem ; 60(20): 15421-15434, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34590834

RESUMEN

We report the synthesis of vanadium(V) oxo complex 1 with a pincer-type dianionic mesoionic carbene (MIC) ligand L1 and the general formula [VOCl(L1)]. A comparison of the structural (SC-XRD), electronic (UV-vis), and electrochemical (cyclic voltammetry) properties of 1 with the benzimidazolinylidene congener 2 (general formula [VOCl(L2)]) shows that the MIC is a stronger donor also for early transition metals with low d-electron population. Since electrochemical studies revealed both complexes to be reversibly reduced, the stronger donor character of MICs was not only demonstrated for the vanadium(V) but also for the vanadium(IV) oxidation state by isolating the reduced vanadium(IV) complexes [Co(Cp*)2][1] and [Co(Cp*)2][2] ([Co(Cp*)2] = decamethylcobaltocenium). The electronic structures of the compounds were investigated by computational methods. Complex 1 was found to be a moderate precursor for salt metathesis reactions, showing selective reactivity toward phenolates or secondary amides, but not toward primary amides and phosphides, thiophenols, or aryls/alkyls donors. Deoxygenation with electron-rich phosphines failed to give the desired vanadium(III) complex. However, treatment of the deprotonated ligand precursor with vanadium(III) trichloride resulted in the clean formation of the corresponding MIC vanadium(III) complex 6, which undergoes a clean two-electron oxidation with organic azides yielding the corresponding imido complexes. The reaction with TMS-N3 did not afford a nitrido complex, but instead the imido complex 10. This study reveals that, contrary to popular belief, MICs are capable of supporting early transition-metal complexes in a variety of oxidation states, thus making them promising candidates for the activation of small molecules and redox catalysis.

18.
Angew Chem Int Ed Engl ; 60(7): 3519-3523, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33155395

RESUMEN

Use of a silyl supported stannylene (Mes TerSn(Sit Bu3 ) [Mes Ter=2,6-(2,4,6-Me3 C6 H2 )2 C6 H3 ] enables activation of white phosphorus under mild conditions, which is reversible under UV light. The reaction of a silylene chloride with the activated P4 complex results in facile P-atom transfer. The computational analysis rationalizes the electronic features and high reactivity of the heteroleptic silyl-substituted stannylene in contrast to the previously reported bis(aryl)stannylene.

19.
Angew Chem Int Ed Engl ; 60(43): 23274-23280, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34411406

RESUMEN

The facile synthesis of the first bis-N-heterocyclic imine-stabilized chlorosilyliumylidene 1 is reported. Remarkably, consecutive reaction of 1 with PPh3 AuCl and K2 Fe(CO)4 gives rise to the unique heterobimetallic complex 1,2-(Mes NHI)2 -C2 H4 -ClSiAuFe(CO)4 (4). The overall neutral complex 4 bears an unusual linear Si-Au-Fe structure and a rare anagostic interaction between the d10 -configured gold atom and a CH bond of the mesityl ligand. According to the computational analysis and 57 Fe Mössbauer spectroscopy, the formal Fe-oxidation state remains at -II. Thus, the electronic structure of 4 is best described as an overall neutral-yet zwitterionic-heterobimetallic "Si(II)+ -Au(I)+ -Fe(-II)2- "-silyliumylidene complex, derived from double anion exchange. The computational analysis indicates strong hyperconjugative back donation from the gold(I) atom to the silyliumylidene ligand.

20.
Angew Chem Int Ed Engl ; 60(20): 11138-11142, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33559940

RESUMEN

Lithium trimethylsilyldiazomethanide and a cobalt (II) precursor with an N-anchored tris-NHC (TIMENmes ) ligand provide access to the cobalt nitrilimide 1. Complex 1 was structurally characterized by single-crystal X-ray diffractometry (SC-XRD) and its electronic structure was examined in detail, including EPR spectroscopy, SQUID magnetometry and computational analyses. The desilylation of the C-(trimethylsilyl)nitrilimide reveals a transient complex with an elusive diazomethanediide ligand, which substitutes one of the mesitylene rings of the ancillary ligand through C-N bond cleavage. This transformation results in the cyclometalated cobalt(II) complex 2, featuring a rare isocyanoamido-κ-C ligand.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA