Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38083393

RESUMEN

Myotonic dystrophy type 1 (DM1) is a genetic neuromuscular progressive multisystem disease that results in a broad spectrum of clinical central nervous system (CNS) involvement, including problems with memory, attention, executive functioning, and social cognition. Fractional anisotropy and mean diffusivity along-tract data calculated using diffusion tensor imaging techniques play a vital role in assessing white matter microstructural changes associated with neurodegeneration caused by DM1. In this work, a novel spectrogram-based deep learning method is proposed to characterize white matter network alterations in DM1 with the goal of building a deep learning model as neuroimaging biomarkers of DM1. The proposed method is evaluated on fractional anisotropies and mean diffusivities along-tract data calculated for 25 major white matter tracts of 46 DM1 patients and 96 unaffected controls. The evaluation data consists of a total of 7100 spectrogram images. The model achieved 91% accuracy in identifying DM1, a significant improvement compared to previous methods.Clinical relevance- Clinical care of DM1 is particularly challenging due to DM1 multisystem involvement and the disease variability. Patients with DM1 often experience neurological and psychological symptoms, such as excessive sleepiness and apathy, that greatly impact their quality of life. Some of DM1 CNS symptoms may be responsive to treatment. The goal of this research is to gain a deeper understanding of the impact of DM1 on the CNS and to develop a deep learning model that can serve as a biomarker for the disease, with the potential to be used in future clinical trials as an outcome measure.


Asunto(s)
Distrofia Miotónica , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Distrofia Miotónica/diagnóstico por imagen , Distrofia Miotónica/complicaciones , Distrofia Miotónica/psicología , Imagen de Difusión Tensora , Anisotropía , Calidad de Vida , Neuroimagen
2.
PLoS Genet ; 5(12): e1000787, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20041201

RESUMEN

Circadian pacemakers are essential to synchronize animal physiology and behavior with the dayrationight cycle. They are self-sustained, but the phase of their oscillations is determined by environmental cues, particularly light intensity and temperature cycles. In Drosophila, light is primarily detected by a dedicated blue-light photoreceptor: CRYPTOCHROME (CRY). Upon light activation, CRY binds to the pacemaker protein TIMELESS (TIM) and triggers its proteasomal degradation, thus resetting the circadian pacemaker. To understand further the CRY input pathway, we conducted a misexpression screen under constant light based on the observation that flies with a disruption in the CRY input pathway remain robustly rhythmic instead of becoming behaviorally arrhythmic. We report the identification of more than 20 potential regulators of CRY-dependent light responses. We demonstrate that one of them, the chromatin-remodeling enzyme KISMET (KIS), is necessary for normal circadian photoresponses, but does not affect the circadian pacemaker. KIS genetically interacts with CRY and functions in PDF-negative circadian neurons, which play an important role in circadian light responses. It also affects daily CRY-dependent TIM oscillations in a peripheral tissue: the eyes. We therefore conclude that KIS is a key transcriptional regulator of genes that function in the CRY signaling cascade, and thus it plays an important role in the synchronization of circadian rhythms with the dayrationight cycle.


Asunto(s)
Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , ADN Helicasas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Pruebas Genéticas , Proteínas de Homeodominio/genética , Luz , Animales , Conducta Animal/efectos de la radiación , Criptocromos/genética , Criptocromos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Genes de Insecto/genética , Proteínas de Homeodominio/metabolismo , Neuronas/metabolismo , Neuronas/efectos de la radiación , Procesamiento Proteico-Postraduccional/efectos de la radiación , ARN Bicatenario/metabolismo
3.
Neuron ; 53(5): 689-701, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17329209

RESUMEN

A fundamental property of circadian rhythms is their ability to persist under constant conditions. In Drosophila, the ventral Lateral Neurons (LNvs) are the pacemaker neurons driving circadian behavior under constant darkness. Wild-type flies are arrhythmic under constant illumination, but flies defective for the circadian photoreceptor CRY remain rhythmic. We found that flies overexpressing the pacemaker gene per or the morgue gene are also behaviorally rhythmic under constant light. Unexpectedly, the LNvs do not drive these rhythms: they are molecularly arrhythmic, and PDF--the neuropeptide they secrete to synchronize behavioral rhythms under constant darkness--is dispensable for rhythmicity in constant light. Molecular circadian rhythms are only found in a group of Dorsal Neurons: the DN1s. Thus, a subset of Dorsal Neurons shares with the LNvs the ability to function as pacemakers for circadian behavior, and its importance is promoted by light.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Drosophila/genética , Drosophila/fisiología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Criptocromos , Oscuridad , Proteínas de Drosophila/fisiología , Proteínas del Ojo/genética , Proteínas del Ojo/fisiología , Iluminación , Neuropéptidos/genética , Neuropéptidos/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Proteínas Circadianas Period , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología
4.
PLoS Biol ; 5(6): e146, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17535111

RESUMEN

Drosophila cryptochrome (CRY) is a key circadian photoreceptor that interacts with the period and timeless proteins (PER and TIM) in a light-dependent manner. We show here that a heat pulse also mediates this interaction, and heat-induced phase shifts are severely reduced in the cryptochrome loss-of-function mutant cry(b). The period mutant per(L) manifests a comparable CRY dependence and dramatically enhanced temperature sensitivity of biochemical interactions and behavioral phase shifting. Remarkably, CRY is also critical for most of the abnormal temperature compensation of per(L) flies, because a per(L); cry(b) strain manifests nearly normal temperature compensation. Finally, light and temperature act together to affect rhythms in wild-type flies. The results indicate a role for CRY in circadian temperature as well as light regulation and suggest that these two features of the external 24-h cycle normally act together to dictate circadian phase.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Flavoproteínas/metabolismo , Calor , Proteínas Nucleares/metabolismo , Animales , Conducta Animal , Relojes Biológicos/genética , Relojes Biológicos/fisiología , Ritmo Circadiano/genética , Criptocromos , Drosophila/genética , Flavoproteínas/genética , Luz , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Proteínas Circadianas Period , Factores de Tiempo
5.
Life Sci Alliance ; 3(8)2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32636217

RESUMEN

The mitochondrial deubiquitylase USP30 negatively regulates the selective autophagy of damaged mitochondria. We present the characterisation of an N-cyano pyrrolidine compound, FT3967385, with high selectivity for USP30. We demonstrate that ubiquitylation of TOM20, a component of the outer mitochondrial membrane import machinery, represents a robust biomarker for both USP30 loss and inhibition. A proteomics analysis, on a SHSY5Y neuroblastoma cell line model, directly compares the effects of genetic loss of USP30 with chemical inhibition. We have thereby identified a subset of ubiquitylation events consequent to mitochondrial depolarisation that are USP30 sensitive. Within responsive elements of the ubiquitylome, several components of the outer mitochondrial membrane transport (TOM) complex are prominent. Thus, our data support a model whereby USP30 can regulate the availability of ubiquitin at the specific site of mitochondrial PINK1 accumulation following membrane depolarisation. USP30 deubiquitylation of TOM complex components dampens the trigger for the Parkin-dependent amplification of mitochondrial ubiquitylation leading to mitophagy. Accordingly, PINK1 generation of phospho-Ser65 ubiquitin proceeds more rapidly in cells either lacking USP30 or subject to USP30 inhibition.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Tioléster Hidrolasas/metabolismo , Células HeLa , Humanos , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/fisiología , Membranas Mitocondriales/fisiología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Mitofagia/efectos de los fármacos , Mitofagia/genética , Células-Madre Neurales/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Tioléster Hidrolasas/fisiología , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
J Neurosci ; 27(40): 10722-33, 2007 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-17913906

RESUMEN

Most animals rely on circadian clocks to synchronize their physiology and behavior with the day/night cycle. Light and temperature are the major physical variables that can synchronize circadian rhythms. Although the effects of light on circadian behavior have been studied in detail in Drosophila, the neuronal mechanisms underlying temperature synchronization of circadian behavior have received less attention. Here, we show that temperature cycles synchronize and durably affect circadian behavior in Drosophila in the absence of light input. This synchronization depends on the well characterized and functionally coupled circadian neurons controlling the morning and evening activity under light/dark cycles: the M cells and E cells. However, circadian neurons distinct from the M and E cells are implicated in the control of rhythmic behavior specifically under temperature cycles. These additional neurons play a dual role: they promote evening activity and negatively regulate E cell function in the middle of the day. We also demonstrate that, although temperature synchronizes circadian behavior more slowly than light, this synchronization is considerably accelerated when the M cell oscillator is absent or genetically altered. Thus, whereas the E cells show great responsiveness to temperature input, the M cells and their robust self-sustained pacemaker act as a resistance to behavioral synchronization by temperature cycles. In conclusion, the behavioral responses to temperature input are determined by both the individual properties of specific groups of circadian neurons and their organization in a neural network.


Asunto(s)
Conducta Animal/fisiología , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Drosophila/fisiología , Neuronas/fisiología , Células Fotorreceptoras de Invertebrados , Temperatura , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Proteínas de Drosophila/genética , Actividad Motora/genética , Actividad Motora/fisiología , Factores de Tiempo
7.
J Biol Rhythms ; 21(4): 272-8, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16864647

RESUMEN

The period (per) and timeless (tim) genes play a central role in the Drosophila circadian clock mechanism. PERIOD (PER) and TIMELESS (TIM) proteins periodically accumulate in the nuclei of pace-making cells in the fly brain and many cells in peripheral organs. In contrast, TIM and PER in the ovarian follicle cells remain cytoplasmic and do not show daily oscillations in their levels. Moreover, TIM is not light sensitive in the ovary, while it is highly sensitive to this input in circadian tissues. The mechanism underlying this intriguing difference is addressed here. It is demonstrated that the circadian photoreceptor CRYPTOCHROME (CRY) is not expressed in ovarian tissues. Remarkably, ectopic cry expression in the ovary is sufficient to cause degradation of TIM after exposure to light. In addition, PER levels are reduced in response to light when CRY is present, as observed in circadian cells. Hence, CRY is the key component of the light input pathway missing in the ovary. However, the factors regulating PER and TIM levels downstream of light/cry action appear to be present in this non-circadian organ.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas del Ojo/metabolismo , Luz , Receptores Acoplados a Proteínas G/metabolismo , Animales , Animales Modificados Genéticamente , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Criptocromos , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Proteínas del Ojo/genética , Femenino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Folículo Ovárico/citología , Folículo Ovárico/fisiología , Proteínas Circadianas Period , Receptores Acoplados a Proteínas G/genética
8.
Front Biosci ; 8: s285-93, 2003 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12700026

RESUMEN

Mammalian circadian rhythms are generated by the hypothalamic suprachiasmatic nuclei and finely tuned to environmental periodicities by neurochemical responses to the light-dark cycle. Light reaches the clock through a direct retinohypothalamic tract, primarily through glutamatergic innervation, and its action is probably regulated by a variety of other neurotransmitters. A key second messenger in circadian photic entrainment is calcium, mobilized through membrane channels or intracellular reservoirs, which triggers the activation of several enzymes, including a calcium/calmodulin-dependent protein kinase and nitric oxide synthase. Other enzymes activated by light are mitogen-activated- and cGMP-dependent protein kinase; all of the above have been reported to be involved in the circadian responses to nocturnal light pulses. These mechanisms lead to expression of specific clock genes which eventually set the phase of the clock and of clock-controlled circadian rhythms.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Genes/fisiología , Luz , Animales , Humanos
9.
Neurochem Int ; 44(8): 617-25, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15016477

RESUMEN

Mammalian circadian rhythms are entrained by light pulses that induce phosphorylation events in the suprachiasmatic nuclei (SCN). Ca(2+)-dependent enzymes are known to be involved in circadian phase shifting. In this paper, we show that calcium/calmodulin-dependent kinase II (CaMKII) is rhythmically phosphorylated in the SCN both under entrained and free-running (constant dark) conditions while neuronal nitric oxide synthase (nNOS) is rhythmically phosphorylated in the SCN only under entrained conditions. Both p-CaMKII and p-NOS (specifically phosphorylated by CaMKII) levels peak during the day or subjective day. Light pulses administered during the subjective night, but not during the day, induced rapid phosphorylation of both enzymes. Moreover, we found an inhibitory effect of KN-62 and KN-93, both CaMKII inhibitors, on light-induced nNOS activity and nNOS phosphorylation respectively, suggesting a direct pathway between both enzymes which is at least partially responsible of photic circadian entrainment.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Proteínas Quinasas Dependientes de Calcio-Calmodulina/biosíntesis , Ritmo Circadiano/fisiología , Óxido Nítrico Sintasa/biosíntesis , Fotoperiodo , Núcleo Supraquiasmático/enzimología , Núcleo Supraquiasmático/fisiología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Bencilaminas/farmacología , Western Blotting , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Cricetinae , Inhibidores Enzimáticos/farmacología , Inyecciones Intraventriculares , Luz , Mesocricetus , Óxido Nítrico Sintasa de Tipo I , Fosforilación , Sulfonamidas/farmacología , Núcleo Supraquiasmático/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA