Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 118(16): 167202, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28474946

RESUMEN

We present a general method to construct translation-invariant and SU(2) symmetric antiferromagnetic parent Hamiltonians of valence bond crystals (VBCs). The method is based on a canonical mapping transforming S=1/2 spin operators into a bilinear form of a new set of dimer fermion operators. We construct parent Hamiltonians of the columnar and the staggered VBCs on the square lattice, for which the VBC is an eigenstate in all regimes and the exact ground state in some region of the phase diagram. We study the departure from the exact VBC regime upon tuning the anisotropy by means of the hierarchical mean field theory and exact diagonalization on finite clusters. In both Hamiltonians, the VBC phase extends over the exact regime and transits to a columnar antiferromagnet (CAFM) through a window of intermediate phases, revealing an intriguing competition of correlation lengths at the VBC-CAFM transition. The method can be readily applied to construct other VBC parent Hamiltonians in different lattices and dimensions.

2.
Phys Rev Lett ; 111(6): 066401, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23971594

RESUMEN

We study the quantum phases of fermions with an explicit SU(N)-symmetric, Heisenberg-like nearest-neighbor flavor exchange interaction on the honeycomb lattice at half filling. Employing projective (zero temperature) quantum Monte Carlo simulations for even values of N, we explore the evolution from a weak-coupling semimetal into the strong-coupling, insulating regime. Furthermore, we compare our numerical results to a saddle-point approximation in the large-N limit. From the large-N regime down to the SU(6) case, the insulating state is found to be a columnar valence bond crystal, with a direct transition to the semimetal at weak, finite coupling, in agreement with the mean-field result in the large-N limit. At SU(4) however, the insulator exhibits a subtly different valence bond crystal structure, stabilized by resonating valence bond plaquettes. In the SU(2) limit, our results support a direct transition between the semimetal and an antiferromagnetic insulator.

3.
Phys Rev Lett ; 109(12): 126402, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23005964

RESUMEN

Using a combination of quantum Monte Carlo simulations, functional renormalization group calculations and mean-field theory, we study the Hubbard model on the Bernal-stacked honeycomb bilayer at half-filling as a model system for bilayer graphene. The free bands consisting of two Fermi points with quadratic dispersions lead to a finite density of states at the Fermi level, which triggers an antiferromagnetic instability that spontaneously breaks sublattice and spin rotational symmetry once local Coulomb repulsions are introduced. Our results reveal an inhomogeneous participation of the spin moments in the ordered ground state, with enhanced moments at the threefold coordinated sites. Furthermore, we find the antiferromagnetic ground state to be robust with respect to enhanced interlayer couplings and extended Coulomb interactions.

4.
Phys Rev Lett ; 93(23): 230404, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15601131

RESUMEN

An exact treatment of the nonequilibrium dynamics of hard-core bosons on one-dimensional lattices shows that, starting from a pure Fock-state, quasi-long-range correlations develop dynamically, and lead to the formation of quasicondensates at finite momenta. Scaling relations characterizing the quasicondensate and the dynamics of its formation are obtained. The relevance of our findings for atom lasers with full control of the wavelength by means of a lattice is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA