Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nanotechnology ; 31(47): 475701, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32885794

RESUMEN

The effect of Fe and Mn co-doping on the magnetic properties of the antiferromagnetic (AFM) NiO nanoparticles which offer large potential for different magnetic applications have been studied. The Rietveld refinement fitting of powder x-ray diffractometry (XRD) patterns confirmed the phase formation of face-centred cubic crystal structure of NiO and average crystallite size lies in the short range of 32-38 nm. The cavity and broadband ferromagnetic resonance (FMR) measurements taken at room temperature demonstrate the smaller local magnetic inhomogeneity for 4%Mn-4%Fe co-doped NiO nanoparticles as compared to undoped, single doped and co-doped with different concentration NiO nanoparticles. The M-H loops revealed the room temperature ferromagnetism-like behaviour for higher Fe doping concentration and lower Mn doping concentration. This can be attributed to the double exchange interaction. The zero field cooled (ZFC) and field cooled (FC) dc magnetization curves showed a small surface freezing peak (at[Formula: see text] at low temperatures and a blocking peak (at [Formula: see text] at higher temperatures. For samples with 4%Mn-4%Fe and 2%Mn-6%Fe, the blocking peak was found at a relatively high temperature in comparison to other samples. This can be attributed to the presence of magnetic exchange interactions which block the magnetic spins against a thermal increase. The ZFC AC-susceptibility showed three peaks; a surface freezing peak at Tf, a blocking peak at TB peak and an anomalous peak at Tx in between [Formula: see text] and [Formula: see text], which was found to be most prominent for the 4%Mn-4%Fe co-doped nanoparticles. The neutron diffraction pattern confirmed the AFM order of the core of the 4%Mn-4%Fe co-doped nanoparticles, which indicates an AFM coupling between the Fe2+ and Mn2+ ions and the Ni2+ ions through super-exchange interaction. Therefore, the origin of TX peak can be attributed to the ferromagnetic coupling between the Fe2+ and Mn2+ ions which has a maximum strength at equal concentration. Thus, small and equal doping concentration of Fe and Mn in NiO nanoparticles increase the magnetic homogeneity which makes them attractive for magnetic applications.

2.
Phys Chem Chem Phys ; 16(36): 19446-52, 2014 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-25103112

RESUMEN

We doped graphene in situ during synthesis from methane and ammonia on copper in a low-pressure chemical vapour deposition system, and investigated the effect of the synthesis temperature and ammonia concentration on the growth. Raman and X-ray photoelectron spectroscopy was used to investigate the quality and nitrogen content of the graphene and demonstrated that decreasing the synthesis temperature and increasing the ammonia flow rate results in an increase in the concentration of nitrogen dopants up to ca. 2.1% overall. However, concurrent scanning electron microscopy studies demonstrate that decreasing both the growth temperature from 1000 to 900 °C and increasing the N/C precursor ratio from 1/50 to 1/10 significantly decreased the growth rate by a factor of six overall. Using scanning tunnelling microscopy we show that the nitrogen was incorporated mainly in substitutional configuration, while current imaging tunnelling spectroscopy showed that the effect of the nitrogen on the density of states was visible only over a few atom distances.

3.
Nanoscale ; 10(16): 7566-7574, 2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29637963

RESUMEN

Titanium nitride exhibits plasmonic behaviour in the visible and NIR region. Combined with a refractory nature, it can be an attractive alternate plasmonic material useful in many applications. Despite the plethora of methods to produce TiN nanoparticles, it remains challenging to generate high quality TiN nanoparticles efficiently. Here we demonstrate the transferred arc plasma technique as a viable way to synthesise TiN nanoparticles. We show here that modulating the processing conditions can control the optical properties and tune the plasmonic response rendering the application of TiN nanoparticles viable across many applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA