Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(9): e2214996120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802419

RESUMEN

Neurons throughout the primate inferior temporal (IT) cortex respond selectively to visual images of faces and other complex objects. The response magnitude of neurons to a given image often depends on the size at which the image is presented, usually on a flat display at a fixed distance. While such size sensitivity might simply reflect the angular subtense of retinal image stimulation in degrees, one unexplored possibility is that it tracks the real-world geometry of physical objects, such as their size and distance to the observer in centimeters. This distinction bears fundamentally on the nature of object representation in IT and on the scope of visual operations supported by the ventral visual pathway. To address this question, we assessed the response dependency of neurons in the macaque anterior fundus (AF) face patch to the angular versus physical size of faces. We employed a macaque avatar to stereoscopically render three-dimensional (3D) photorealistic faces at multiple sizes and distances, including a subset of size/distance combinations designed to cast the same size retinal image projection. We found that most AF neurons were modulated principally by the 3D physical size of the face rather than its two-dimensional (2D) angular size on the retina. Further, most neurons responded strongest to extremely large and small faces, rather than to those of normal size. Together, these findings reveal a graded encoding of physical size among face patch neurons, providing evidence that category-selective regions of the primate ventral visual pathway participate in a geometric analysis of real-world objects.


Asunto(s)
Macaca , Lóbulo Temporal , Animales , Lóbulo Temporal/fisiología , Neuronas/fisiología , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa/métodos , Mapeo Encefálico
2.
J Sleep Res ; 33(1): e13891, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37039398

RESUMEN

Sleep problems are common among veterans with post-traumatic stress disorder and closely associated with hyperarousal symptoms. Transcutaneous vagus nerve stimulation (tVNS) may have potential to improve sleep quality in veterans with PTSD through effects on brain systems relevant to hyperarousal and sleep-wake regulation. The current pilot study examines the effect of 1 h of tVNS administered at "lights out" on sleep architecture, microstructure, and autonomic activity. Thirteen veterans with PTSD completed two nights of laboratory-based polysomnography during which they received 1 h of either active tVNS (tragus) or sham stimulation (earlobe) at "lights out" with randomised order. Sleep staging and stability metrics were derived from polysomnography data. Autonomic activity during sleep was assessed using the Porges-Bohrer method for calculating respiratory sinus arrhythmia (RSAP-B ). Paired t-tests revealed a small decrease in the total sleep time (d = -0.31), increase in N3 sleep (d = 0.23), and a small-to-moderate decrease in REM sleep (d = -0.48) on nights of active tVNS relative to sham stimulation. tVNS was also associated with a moderate reduction in cyclic alternating pattern (CAP) rate (d = -0.65) and small-to-moderate increase in RSAP-B during NREM sleep. Greater NREM RSAP-B was associated with a reduced CAP rate and NREM alpha power. This pilot study provides preliminary evidence that tVNS may improve sleep depth and stability in veterans with PTSD, as well as increase parasympathetically mediated nocturnal autonomic activity. These results warrant continued investigation into tVNS as a potential tool for treating sleep disturbance in veterans with PTSD.


Asunto(s)
Trastornos por Estrés Postraumático , Estimulación del Nervio Vago , Veteranos , Humanos , Trastornos por Estrés Postraumático/terapia , Estimulación del Nervio Vago/métodos , Proyectos Piloto , Sueño
3.
Psychosom Med ; 84(8): 885-892, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35980773

RESUMEN

OBJECTIVE: Depression is common in people with HIV (PWH), yet little is known about the mechanisms contributing to depressive symptoms in PWH. Previous research across a range of populations has suggested a relationship between the neuropeptide oxytocin and depressive symptoms, with variable directionality. This article investigated the association between peripheral oxytocin levels and depressive symptoms in PWH. METHODS: Unextracted oxytocin serum concentrations were assayed in 79 PWH (44% female, mean age = 34.35 [8.5], mean body mass index = 25.69 [5.46], mean CD4 = 516.60 [271.15]) who also completed the Center for Epidemiologic Studies Depression Scale (CES-D). CES-D items were evaluated in an exploratory factor analysis (EFA), and the relationships between oxytocin, total CES-D score, and the resulting EFA factors were analyzed with multivariate linear regressions conducted in R. Multiple regression models were used to adjust for age, sex, body mass index, CD4, and education. RESULTS: Contrary to hypothesized, higher peripheral oxytocin levels were associated with higher CES-D total scores with a small-to-moderate effect size ( ß = 0.26, p = .009). Following Bonferroni correction, oxytocin was not significantly associated with any of the five factors identified from the EFA: depressed affect, positive affect, appetite, cognitive symptoms, or perceived failure ( p values > .042). Small effect sizes were found for the depressed affect ( ß = 0.22) and perceived failure ( ß = 0.21) factors ( p values > .042). CONCLUSIONS: In a sample of predominately Black or African American individuals with HIV, higher oxytocin was associated with higher total depressive symptoms. In addition, this relationship was slightly stronger than those of specific depressive symptoms. These findings warrant further study into the role of oxytocin in mood symptoms within PWH.


Asunto(s)
Depresión , Infecciones por VIH , Adulto , Negro o Afroamericano , Población Negra , Depresión/complicaciones , Femenino , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Humanos , Masculino , Oxitocina
4.
J Neurosci ; 40(42): 8119-8131, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928886

RESUMEN

When we move the features of our face, or turn our head, we communicate changes in our internal state to the people around us. How this information is encoded and used by an observer's brain is poorly understood. We investigated this issue using a functional MRI adaptation paradigm in awake male macaques. Among face-selective patches of the superior temporal sulcus (STS), we found a double dissociation of areas processing facial expression and those processing head orientation. The face-selective patches in the STS fundus were most sensitive to facial expression, as was the amygdala, whereas those on the lower, lateral edge of the sulcus were most sensitive to head orientation. The results of this study reveal a new dimension of functional organization, with face-selective patches segregating within the STS. The findings thus force a rethinking of the role of the face-processing system in representing subject-directed actions and supporting social cognition.SIGNIFICANCE STATEMENT When we are interacting with another person, we make inferences about their emotional state based on visual signals. For example, when a person's facial expression changes, we are given information about their feelings. While primates are thought to have specialized cortical mechanisms for analyzing the identity of faces, less is known about how these mechanisms unpack transient signals, like expression, that can change from one moment to the next. Here, using an fMRI adaptation paradigm, we demonstrate that while the identity of a face is held constant, there are separate mechanisms in the macaque brain for processing transient changes in the face's expression and orientation. These findings shed new light on the function of the face-processing system during social exchanges.


Asunto(s)
Expresión Facial , Percepción de Movimiento/fisiología , Orientación , Percepción Social , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Animales , Cognición , Cabeza , Procesamiento de Imagen Asistido por Computador , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología
5.
Cogn Behav Neurol ; 34(1): 26-37, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33652467

RESUMEN

Posttraumatic stress disorder (PTSD) is prevalent among veterans with a history of traumatic brain injury (TBI); however, the relationship between TBI and PTSD is not well understood. We present the case of a 31-year-old male veteran with PTSD who reported TBI before entering the military. The reported injury appeared to be mild: He was struck on the head by a baseball, losing consciousness for ∼10 seconds. Years later, he developed severe PTSD after combat exposure. He was not receiving clinical services for these issues but was encountered in the context of a research study. We conducted cognitive, autonomic, and MRI assessments to assess brain function, structure, and neurophysiology. Next, we compared amygdala volume, uncinate fasciculus diffusion, functional connectivity, facial affect recognition, and baroreceptor coherence with those of a control group of combat veterans (n = 23). Our veteran's MRI revealed a large right medial-orbital prefrontal lesion with surrounding atrophy, which the study neuroradiologist interpreted as likely caused by traumatic injury. Comparison with controls indicated disrupted structural and functional connectivity of prefrontal-limbic structures and impaired emotional, cognitive, and autonomic responses. Detection of this injury before combat would have been unlikely in a clinical context because our veteran had reported a phenomenologically mild injury, and PTSD is a simple explanation for substance abuse, sleep impairment, and psychosocial distress. However, it may be that right prefrontal-limbic disruption imparted vulnerability for the development of PTSD and exacerbated our veteran's emotional response to, and recovery from, PTSD.


Asunto(s)
Conmoción Encefálica/psicología , Trastornos por Estrés Postraumático/etiología , Adulto , Humanos , Masculino , Trastornos por Estrés Postraumático/psicología
6.
Proc Natl Acad Sci U S A ; 115(31): 8043-8048, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012600

RESUMEN

In free-viewing experiments, primates orient preferentially toward faces and face-like stimuli. To investigate the neural basis of this behavior, we measured the spontaneous viewing preferences of monkeys with selective bilateral amygdala lesions. The results revealed that when faces and nonface objects were presented simultaneously, monkeys with amygdala lesions had no viewing preference for either conspecific faces or illusory facial features in everyday objects. Instead of directing eye movements toward socially relevant features in natural images, we found that, after amygdala loss, monkeys are biased toward features with increased low-level salience. We conclude that the amygdala has a role in our earliest specialized response to faces, a behavior thought to be a precursor for efficient social communication and essential for the development of face-selective cortex.


Asunto(s)
Amígdala del Cerebelo/fisiología , Reconocimiento Visual de Modelos , Percepción Visual , Animales , Movimientos Oculares , Cara , Femenino , Macaca mulatta , Masculino
7.
Brain Inj ; 35(8): 922-933, 2021 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-34053386

RESUMEN

OBJECTIVE: Disrupted sleep is common following combat deployment. Contributors to risk include posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI); however, the mechanisms linking PTSD, mTBI, and sleep are unclear. Both PTSD and mTBI affect frontolimbic white matter tracts, such as the uncinate fasciculus. The current study examined the relationship between PTSD symptom presentation, lateralized uncinate fasciculus integrity, and sleep quality. METHOD: Participants include 42 combat veterans with and without PTSD and mTBI. Freesurfer and Tracula were used to establish specific white matter ROI integrity via 3-T MRI. The Pittsburgh Sleep Quality Index and PTSD Checklist were used to assess sleep quality and PTSD symptoms. RESULTS: Decreased fractional anisotropy in the right uncinate fasciculus (ß = -1.11, SE = 0.47, p < .05) and increased hyperarousal symptom severity (ß = 3.50, SE = 0.86, p < .001) were associated with poorer sleep quality. CONCLUSION: Both right uncinate integrity and hyperarousal symptom severity are associated withsleep quality in combat veterans. The right uncinate is a key regulator of limbic behavior and sympathetic nervous system reactivity, a core component of hyperarousal. Damage to this pathway may be one mechanism by which mTBI and/or PTSD could create vulnerability for sleep problems following combat deployment.


Asunto(s)
Trastornos por Estrés Postraumático , Veteranos , Sustancia Blanca , Nivel de Alerta , Humanos , Sueño , Trastornos por Estrés Postraumático/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
8.
Sensors (Basel) ; 21(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066740

RESUMEN

Models of electrochemical sensors play a critical role for electronic engineers in designing electrochemical nanosensor-based integrated systems and are also widely used in analyzing chemical reactions to model the current, electrical potential, and impedance occurring at the surface of an electrode. However, the use of jargon and the different perspectives of scientists and electronic engineers often result in different viewpoints on principles of electrochemical models, which can impede the effective development of sensor technology. This paper is aimed to fill the knowledge gap between electronic engineers and scientists by providing a review and an analysis of electrochemical models. First, a brief review of the electrochemical sensor mechanism from a scientist's perspective is presented. Then a general model, which reflects a more realistic situation of nanosensors is proposed from an electronic engineer point of view and a comparison between the Randles Model is given with its application in electrochemical impedance spectroscopy and general sensor design. Finally, with the help of the proposed equivalent model, a cohesive explanation of the scan rate of cyclic voltammetry is discussed. The information of this paper can contribute to enriching the knowledge of electrochemical sensor models for scientists and is also able to guide the electronic engineer on designing next-generation sensor layouts.

9.
Sensors (Basel) ; 21(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062887

RESUMEN

Global food production needs to increase in order to meet the demands of an ever growing global population. As resources are finite, the most feasible way to meet this demand is to minimize losses and improve efficiency. Regular monitoring of factors like animal health, soil and water quality for example, can ensure that the resources are being used to their maximum efficiency. Existing monitoring techniques however have limitations, such as portability, turnaround time and requirement for additional reagents. In this work, we explore the use of micro- and nano-scale electrode devices, for the development of an electrochemical sensing platform to digitalize a wide range of applications within the agri-food sector. With this platform, we demonstrate the direct electrochemical detection of pesticides, specifically clothianidin and imidacloprid, with detection limits of 0.22 ng/mL and 2.14 ng/mL respectively, and nitrates with a detection limit of 0.2 µM. In addition, interdigitated electrode structures also enable an in-situ pH control technique to mitigate pH as an interference and modify analyte response. This technique is applied to the analysis of monochloramine, a common water disinfectant. Concerning biosensing, the sensors are modified with bio-molecular probes for the detection of both bovine viral diarrhea virus species and antibodies, over a range of 1 ng/mL to 10 µg/mL. Finally, a portable analogue front end electronic reader is developed to allow portable sensing, with control and readout undertaken using a smart phone application. Finally, the sensor chip platform is integrated with these electronics to provide a fully functional end-to-end smart sensor system compatible with emerging Agri-Food digital decision support tools.

10.
J Int Neuropsychol Soc ; 25(10): 1044-1050, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31543083

RESUMEN

OBJECTIVES: Healthy young adults often demonstrate a leftward spatial bias called "pseudoneglect" which often diminishes with aging. One hypothesis for this phenomenon is an age-related deterioration in right hemisphere functions (right hemi-aging). If true, then a greater rightward bias should be evident on all spatial attention tasks regardless of content. Another hypothesis is a decrease in asymmetrical hemispheric activation with age (HAROLD). If true, older participants may show reduced bias in all spatial tasks, regardless of leftward or rightward biasing of specific spatial content. METHODS: Seventy right-handed healthy participants, 33 younger (21-40) and 37 older (60-78), were asked to bisect solid and character-letter lines as well as to perform left and right trisections of solid lines. RESULTS: Both groups deviated toward the left on solid line bisections and left trisections. Both groups deviated toward the right on right trisections and character line bisections. In all tasks, the older participants were more accurate than the younger participants. CONCLUSIONS: The finding that older participants were more accurate than younger participants across all bisection and trisection conditions suggests a decrease in the asymmetrical hemispheric activation of these specialized networks important in the allocation of contralateral spatial attention or spatial action intention.


Asunto(s)
Envejecimiento/fisiología , Atención/fisiología , Lateralidad Funcional/fisiología , Desempeño Psicomotor/fisiología , Percepción Espacial/fisiología , Adulto , Factores de Edad , Anciano , Femenino , Humanos , Juicio/fisiología , Masculino , Persona de Mediana Edad , Adulto Joven
11.
Breast Cancer Res ; 19(1): 35, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28340615

RESUMEN

BACKGROUND: Psychological stress increases the circulating levels of the stress hormones cortisol and norepinephrine (NE). Chronic exposure to elevated stress hormones has been linked to a reduced response to chemotherapy through induction of DNA damage. We hypothesize that stress hormone signalling may induce DNA damage through the production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) and interference in DNA repair processes, promoting tumourigenesis. METHODS: Breast cancer cell lines were incubated with physiological levels of cortisol and NE in the presence and absence of receptor antagonists and inducible nitric oxide synthase (iNOS) inhibitors and DNA damage measured using phosphorylated γ-H2AX. The rate of DNA repair was measured using comet assays and electrochemical sensors were used to detect ROS/RNS in the cell lysates from cells exposed to stress hormones. A syngeneic mouse model was used to assess the presence of iNOS in mammary tumours in stressed versus control animals and expression of iNOS was examined using western blotting and qRT-PCR. RESULTS: Acute exposure to cortisol and NE significantly increased levels of ROS/RNS and DNA damage and this effect was diminished in the presence of receptor antagonists. Cortisol induced DNA damage and the production of RNS was further attenuated in the presence of an iNOS inhibitor. An increase in the expression of iNOS in response to psychological stress was observed in vivo and in cortisol-treated cells. Inhibition of glucocorticoid receptor-associated Src kinase also produced a decrease in cortisol-induced RNS. CONCLUSION: These results demonstrate that glucocorticoids may interact with iNOS in a non-genomic manner to produce damaging levels of RNS, thus allowing an insight into the potential mechanisms by which psychological stress may impact breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Daño del ADN , Glucocorticoides/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Reparación del ADN , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Humanos , Ratones , Modelos Biológicos , Óxido Nítrico Sintasa de Tipo II/genética , Estrés Oxidativo , Transducción de Señal/efectos de los fármacos
12.
Anal Chem ; 89(21): 11690-11696, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-28971674

RESUMEN

The activity of the colon is regulated by chemical signaling, of which serotonin (5-HT) is a key transmitter. Monitoring of mucosal 5-HT overflow has been achieved to date using microelectrodes on a small segment of colonic tissue; however, little is known if such measurements are reflective with regards to 5-HT signaling from the entire colon. This study focused on developing an electrochemical array device that could be utilized to conduct multisite measurements of 5-HT overflow from the entire colon. A 3D printed mold was fabricated that could house 6 multiwall carbon nanotube composite electrodes and provide a fixed distance between the electrodes and the tissue along the entire length of the colon. The electrodes were assessed for sensitivity, stability, and crosstalk before conducting in vitro measurements using colons obtained from 6- and 24-month old mice. As composite electrodes can have a high degree of variability, normalization factors were required between electrodes for a given array. The device had the sensitivity and stability required for 5-HT measurements from intestinal tissue. Regio-specific changes in 5-HT overflow were observed with age, where increases in 5-HT overflow were observed in the distal colon due to an impairment/loss in the serotonin transporter (SERT). Our strategy can be utilized to develop arrays of varying sizes and geometries, which can offer practical solutions for large-scale tissue measurements.


Asunto(s)
Colon/citología , Colon/metabolismo , Microtecnología/instrumentación , Nanotubos de Carbono/química , Impresión Tridimensional , Animales , Diseño de Equipo , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microelectrodos , Serotonina/metabolismo , Transducción de Señal
13.
Front Mol Neurosci ; 17: 1391564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114642

RESUMEN

Down syndrome is a genetic-based disorder that results from the triplication of chromosome 21, leading to an overexpression of many triplicated genes, including the gene encoding Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A). This protein has been observed to regulate numerous cellular processes, including cell proliferation, cell functioning, differentiation, and apoptosis. Consequently, an overexpression of DYRK1A has been reported to result in cognitive impairment, a key phenotype of individuals with Down syndrome. Therefore, downregulating DYRK1A has been explored as a potential therapeutic strategy for Down syndrome, with promising results observed from in vivo mouse models and human clinical trials that administered epigallocatechin gallate. Current DYRK1A inhibitors target the protein function directly, which tends to exhibit low specificity and selectivity, making them unfeasible for clinical or research purposes. On the other hand, antisense oligonucleotides (ASOs) offer a more selective therapeutic strategy to downregulate DYRK1A expression at the gene transcript level. Advances in ASO research have led to the discovery of numerous chemical modifications that increase ASO potency, specificity, and stability. Recently, several ASOs have been approved by the U.S. Food and Drug Administration to address neuromuscular and neurological conditions, laying the foundation for future ASO therapeutics. The limitations of ASOs, including their high production cost and difficulty delivering to target tissues can be overcome by further advances in ASO design. DYRK1A targeted ASOs could be a viable therapeutic approach to improve the quality of life for individuals with Down syndrome and their families.

14.
J Neurophysiol ; 110(1): 190-203, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23576705

RESUMEN

Reliable estimation of three-dimensional (3D) surface orientation is critical for recognizing and interacting with complex 3D objects in our environment. Human observers maximize the reliability of their estimates of surface slant by integrating multiple depth cues. Texture and binocular disparity are two such cues, but they are qualitatively very different. Existing evidence suggests that representations of surface tilt from each of these cues coincide at the single-neuron level in higher cortical areas. However, the cortical circuits responsible for 1) integration of such qualitatively distinct cues and 2) encoding the slant component of surface orientation have not been assessed. We tested for cortical responses related to slanted plane stimuli that were defined independently by texture, disparity, and combinations of these two cues. We analyzed the discriminability of functional MRI responses to two slant angles using multivariate pattern classification. Responses in visual area V3B/KO to stimuli containing congruent cues were more discriminable than those elicited by single cues, in line with predictions based on the fusion of slant estimates from component cues. This improvement was specific to congruent combinations of cues: incongruent cues yielded lower decoding accuracies, which suggests the robust use of individual cues in cases of large cue conflicts. These data suggest that area V3B/KO is intricately involved in the integration of qualitatively dissimilar depth cues.


Asunto(s)
Señales (Psicología) , Disparidad Visual/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Masculino , Propiedades de Superficie , Adulto Joven
16.
Neurotherapeutics ; 20(2): 419-430, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36477709

RESUMEN

Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain's primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test - Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus, n = 25) or sham control conditions (left ear lobe, n = 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population.


Asunto(s)
Disfunción Cognitiva , Estimulación del Nervio Vago , Humanos , Femenino , Estimulación del Nervio Vago/métodos , Semántica , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Hipocampo , Nervio Vago/fisiología , Disfunción Cognitiva/terapia
17.
Inorg Chem ; 51(21): 11521-32, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23092201

RESUMEN

The electrochemistry of the water oxidation catalyst, Rb(8)K(2)[{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(γ-SiW(10)O(36))(2)] (Rb(8)K(2)-1(0)) has been studied in the presence and absence of potassium cations in both hydrochloric and sulfuric acid solutions by transient direct current (dc) cyclic voltammetry, a steady state dc method in the rotating disk configuration and the kinetically sensitive technique of Fourier transformed large-amplitude alternating current (ac) voltammetry. In acidic media, the presence of potassium ions affects the kinetics (apparent rate of electron transfer) and thermodynamics (reversible potentials) of the eight processes (A'/A to H/H') that are readily detected under dc voltammetric conditions. The six most positive processes (A'/A to F/F'), each involve a one electron ruthenium based charge transfer step (A'/A, B'/B are Ru(IV/V) oxidation and C/C' to F/F' are Ru(IV/III) reduction). The apparent rate of electron transfer of the ruthenium centers in sulfuric acid is higher than in hydrochloric acid. The addition of potassium cations increases the apparent rates and gives rise to a small shift of reversible potential. Simulations of the Fourier transformed ac voltammetry method show that the B'/B, E/E', and F/F' processes are quasi-reversible, while the others are close to reversible. A third Ru(IV/V) oxidation process is observed just prior to the positive potential limit via dc methods. Importantly, the ability of the higher harmonic components of the ac method to discriminate against the irreversible background solvent process allows this (process I) as well as an additional fourth reversible ruthenium based process (J) to be readily identified. The steady-state rotating disk electrode (RDE) method confirmed that all four Ru-centers in Rb(8)K(2)-1(0) are in oxidation state IV. The dc and ac data indicate that reversible potentials of the four ruthenium centers are evenly spaced, which may be relevant to understanding of the water oxidation electrocatalysis. A profound effect of the potassium cation is observed for the one-electron transfer process (G/G') assigned to Ru(III/II) reduction and the multiple electron transfer reduction process (H/H') that arise from the tungstate polyoxometalate framework. A significant shift of E°' to a more positive potential value for process H/H' was observed on removal of K(+) (~100 mV in H(2)SO(4) and ~50 mV in HCl).

18.
SN Comput Sci ; 3(6): 426, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35950192

RESUMEN

A novel approach to induce Fuzzy Pattern Trees using Grammatical Evolution is presented in this paper. This new method, called Fuzzy Grammatical Evolution, is applied to a set of benchmark classification problems. Experimental results show that Fuzzy Grammatical Evolution attains similar and oftentimes better results when compared with state-of-the-art Fuzzy Pattern Tree composing methods, namely Fuzzy Pattern Trees evolved using Cartesian Genetic Programming, on a set of benchmark problems. We show that, although Cartesian Genetic Programming produces smaller trees, Fuzzy Grammatical Evolution produces better performing trees. Fuzzy Grammatical Evolution also benefits from a reduction in the number of necessary user-selectable parameters, while Cartesian Genetic Programming requires the selection of three crucial graph parameters before each experiment. To address the issue of bloat, an additional version of Fuzzy Grammatical Evolution using parsimony pressure was tested. The experimental results show that Fuzzy Grammatical Evolution with this extension routinely finds smaller trees than those using Cartesian Genetic Programming without any compromise in performance. To improve the performance of Fuzzy Grammatical Evolution, various ensemble methods were investigated. Boosting was seen to find the best individuals on half the benchmarks investigated.

20.
Curr Biol ; 31(9): 1826-1835.e3, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33636119

RESUMEN

Primate social communication depends on the perceptual integration of visual and auditory cues, reflected in the multimodal mixing of sensory signals in certain cortical areas. The macaque cortical face patch network, identified through visual, face-selective responses measured with fMRI, is assumed to contribute to visual social interactions. However, whether face patch neurons are also influenced by acoustic information, such as the auditory component of a natural vocalization, remains unknown. Here, we recorded single-unit activity in the anterior fundus (AF) face patch, in the superior temporal sulcus, and anterior medial (AM) face patch, on the undersurface of the temporal lobe, in macaques presented with audiovisual, visual-only, and auditory-only renditions of natural movies of macaques vocalizing. The results revealed that 76% of neurons in face patch AF were significantly influenced by the auditory component of the movie, most often through enhancement of visual responses but sometimes in response to the auditory stimulus alone. By contrast, few neurons in face patch AM exhibited significant auditory responses or modulation. Control experiments in AF used an animated macaque avatar to demonstrate, first, that the structural elements of the face were often essential for audiovisual modulation and, second, that the temporal modulation of the acoustic stimulus was more important than its frequency spectrum. Together, these results identify a striking contrast between two face patches and specifically identify AF as playing a potential role in the integration of audiovisual cues during natural modes of social communication.


Asunto(s)
Percepción Auditiva/fisiología , Reconocimiento Facial/fisiología , Macaca mulatta/fisiología , Neuronas/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Estimulación Acústica , Acústica , Animales , Imagen por Resonancia Magnética , Estimulación Luminosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA