Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 138(23): 234707, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23802976

RESUMEN

A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ~50 ml∕min (STP) at ~850 °C. The films were extensively evaluated by surface wettability, electron affinity, elemental composition, photoconductivity, and redox studies. In addition, electrografting experiments were performed. The surface characteristics as well as the optoelectronic and redox properties of the annealed films were found to be very similar to hydrogen plasma-treated films. Moreover, the presented method is compatible with atmospheric pressure and provides a low-cost solution to hydrogenate CVD diamond, which makes it interesting for industrial applications. The plausible mechanism for the hydrogen termination of CVD diamond films is based on the formation of surface carbon dangling bonds and carbon-carbon unsaturated bonds at the applied tempera-ture, which react with molecular hydrogen to produce a hydrogen-terminated surface.

2.
Nanotechnology ; 22(31): 315710, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21737870

RESUMEN

by performing electrodeless time-resolved microwave conductivity measurements, the efficiency of charge carrier generation, their mobility, and the decay kinetics on photoexcitation were studied in arrays of Si nanowires grown by the vapor-liquid-solid mechanism. Large enhancements in the magnitude of the photoconductance and charge carrier lifetime are found depending on the incorporation of impurities during the growth. They are explained by the internal electric field that builds up, due to higher doped sidewalls, as revealed by detailed analysis of the nanowire morphology and chemical composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA