Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(3): 101589, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35033536

RESUMEN

Current immunosuppressive strategies in organ transplantation rely on calcineurin inhibitors cyclosporine A (CsA) or tacrolimus (Tac). Both drugs are nephrotoxic, but CsA has been associated with greater renal damage than Tac. CsA inhibits calcineurin by forming complexes with cyclophilins, whose chaperone function is essential for proteostasis. We hypothesized that stronger toxicity of CsA may be related to suppression of cyclophilins with ensuing endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in kidney epithelia. Effects of CsA and Tac (10 µM for 6 h each) were compared in cultured human embryonic kidney 293 (HEK 293) cells, primary human renal proximal tubule (PT) cells, freshly isolated rat PTs, and knockout HEK 293 cell lines lacking the critical ER stress sensors, protein kinase RNA-like ER kinase or activating transcription factor 6 (ATF6). UPR was evaluated by detection of its key components. Compared with Tac treatment, CsA induced significantly stronger UPR in native cultured cells and isolated PTs. Evaluation of proapoptotic and antiapoptotic markers suggested an enhanced apoptotic rate in CsA-treated cells compared with Tac-treated cells as well. Similar to CsA treatment, knockdown of cyclophilin A or B by siRNA caused proapoptotic UPR, whereas application of the chemical chaperones tauroursodeoxycholic acid or 4-phenylbutyric acid alleviated CsA-induced UPR. Deletion of protein kinase RNA-like ER kinase or ATF6 blunted CsA-induced UPR as well. In summary, inhibition of cyclophilin chaperone function with ensuing ER stress and proapoptotic UPR aggravates CsA toxicity, whereas pharmacological modulation of UPR bears potential to alleviate renal side effects of CsA.


Asunto(s)
Inhibidores de la Calcineurina , Ciclosporina , Estrés del Retículo Endoplásmico , Túbulos Renales , Animales , Calcineurina/metabolismo , Inhibidores de la Calcineurina/farmacología , Ciclofilinas/metabolismo , Ciclosporina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HEK293 , Humanos , Inmunosupresores/farmacología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/inmunología , Proteínas Quinasas , ARN , Ratas , Tacrolimus/farmacología , Respuesta de Proteína Desplegada
2.
J Am Soc Nephrol ; 33(4): 699-717, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35031570

RESUMEN

BACKGROUND: The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiologic role of claudin-10a in the kidney has been unclear. METHODS: To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice, confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining, and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. RESULTS: Mice deficient in claudin-10a were fertile and without overt phenotypes. On knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a result, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison with other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, and unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. CONCLUSIONS: Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyper-reabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.


Asunto(s)
Claudina-2 , Claudinas/metabolismo , Animales , Cationes/metabolismo , Túbulos Renales Proximales/metabolismo , Ratones , Permeabilidad , Uniones Estrechas/fisiología
3.
Am J Physiol Renal Physiol ; 318(1): F216-F228, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31736353

RESUMEN

K+ deficiency stimulates renal salt reuptake via the Na+-Cl- cotransporter (NCC) of the distal convoluted tubule (DCT), thereby reducing K+ losses in downstream nephron segments while increasing NaCl retention and blood pressure. NCC activation is mediated by a kinase cascade involving with no lysine (WNK) kinases upstream of Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress-responsive kinase-1 (OSR1). In K+ deficiency, WNKs and SPAK/OSR1 concentrate in spherical cytoplasmic domains in the DCT termed "WNK bodies," the significance of which is undetermined. By feeding diets of varying salt and K+ content to mice and using genetically engineered mouse lines, we aimed to clarify whether WNK bodies contribute to WNK-SPAK/OSR1-NCC signaling. Phosphorylated SPAK/OSR1 was present both at the apical membrane and in WNK bodies within 12 h of dietary K+ deprivation, and it was promptly suppressed by K+ loading. In WNK4-deficient mice, however, larger WNK bodies formed, containing unphosphorylated WNK1, SPAK, and OSR1. This suggests that WNK4 is the primary active WNK isoform in WNK bodies and catalyzes SPAK/OSR1 phosphorylation therein. We further examined mice carrying a kidney-specific deletion of the basolateral K+ channel-forming protein Kir4.1, which is required for the DCT to sense plasma K+ concentration. These mice displayed remnant mosaic expression of Kir4.1 in the DCT, and upon K+ deprivation, WNK bodies developed only in Kir4.1-expressing cells. We postulate a model of DCT function in which NCC activity is modulated by plasma K+ concentration via WNK4-SPAK/OSR1 interactions within WNK bodies.


Asunto(s)
Hipopotasemia/metabolismo , Riñón/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Femenino , Hipopotasemia/sangre , Túbulos Renales Distales/metabolismo , Masculino , Ratones , Ratones Noqueados , Fosforilación , Potasio/sangre , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/fisiología , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(2): E219-E227, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028216

RESUMEN

The thick ascending limb (TAL) of Henle's loop drives paracellular Na+, Ca2+, and Mg2+ reabsorption via the tight junction (TJ). The TJ is composed of claudins that consist of four transmembrane segments, two extracellular segments (ECS1 and -2), and one intracellular loop. Claudins interact within the same (cis) and opposing (trans) plasma membranes. The claudins Cldn10b, -16, and -19 facilitate cation reabsorption in the TAL, and their absence leads to a severe disturbance of renal ion homeostasis. We combined electrophysiological measurements on microperfused mouse TAL segments with subsequent analysis of claudin expression by immunostaining and confocal microscopy. Claudin interaction properties were examined using heterologous expression in the TJ-free cell line HEK 293, live-cell imaging, and Förster/FRET. To reveal determinants of interaction properties, a set of TAL claudin protein chimeras was created and analyzed. Our main findings are that (i) TAL TJs show a mosaic expression pattern of either cldn10b or cldn3/cldn16/cldn19 in a complex; (ii) TJs dominated by cldn10b prefer Na+ over Mg2+, whereas TJs dominated by cldn16 favor Mg2+ over Na+; (iii) cldn10b does not interact with other TAL claudins, whereas cldn3 and cldn16 can interact with cldn19 to form joint strands; and (iv) further claudin segments in addition to ECS2 are crucial for trans interaction. We suggest the existence of at least two spatially distinct types of paracellular channels in TAL: a cldn10b-based channel for monovalent cations such as Na+ and a spatially distinct site for reabsorption of divalent cations such as Ca2+ and Mg2.


Asunto(s)
Claudinas/metabolismo , Asa de la Nefrona/metabolismo , Magnesio/metabolismo , Sodio/metabolismo , Animales , Claudinas/genética , Células HEK293 , Humanos , Asa de la Nefrona/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas Sprague-Dawley , Uniones Estrechas/metabolismo
5.
J Am Soc Nephrol ; 30(6): 946-961, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31097611

RESUMEN

BACKGROUND: Antagonists of the V1a vasopressin receptor (V1aR) are emerging as a strategy for slowing progression of CKD. Physiologically, V1aR signaling has been linked with acid-base homeostasis, but more detailed information is needed about renal V1aR distribution and function. METHODS: We used a new anti-V1aR antibody and high-resolution microscopy to investigate Va1R distribution in rodent and human kidneys. To investigate whether V1aR activation promotes urinary H+ secretion, we used a V1aR agonist or antagonist to evaluate V1aR function in vasopressin-deficient Brattleboro rats, bladder-catheterized mice, isolated collecting ducts, and cultured inner medullary collecting duct (IMCD) cells. RESULTS: Localization of V1aR in rodent and human kidneys produced a basolateral signal in type A intercalated cells (A-ICs) and a perinuclear to subapical signal in type B intercalated cells of connecting tubules and collecting ducts. Treating vasopressin-deficient Brattleboro rats with a V1aR agonist decreased urinary pH and tripled net acid excretion; we observed a similar response in C57BL/6J mice. In contrast, V1aR antagonist did not affect urinary pH in normal or acid-loaded mice. In ex vivo settings, basolateral treatment of isolated perfused medullary collecting ducts with the V1aR agonist or vasopressin increased intracellular calcium levels in ICs and decreased luminal pH, suggesting V1aR-dependent calcium release and stimulation of proton-secreting proteins. Basolateral treatment of IMCD cells with the V1aR agonist increased apical abundance of vacuolar H+-ATPase in A-ICs. CONCLUSIONS: Our results show that activation of V1aR contributes to urinary acidification via H+ secretion by A-ICs, which may have clinical implications for pharmacologic targeting of V1aR.


Asunto(s)
Equilibrio Ácido-Base/efectos de los fármacos , Receptores de Vasopresinas/efectos de los fármacos , Vasopresinas/farmacología , Equilibrio Ácido-Base/genética , Animales , Células Cultivadas/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Técnica del Anticuerpo Fluorescente , Células HEK293/efectos de los fármacos , Células HEK293/metabolismo , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Inmunohistoquímica , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratas Brattleboro , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Receptores de Vasopresinas/genética , Sensibilidad y Especificidad , Urinálisis/métodos
6.
Am J Physiol Renal Physiol ; 316(2): F292-F300, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30484345

RESUMEN

Hypokalemia contributes to the progression of chronic kidney disease, although a definitive pathophysiological theory to explain this remains to be established. K+ deficiency results in profound alterations in renal epithelial transport. These include an increase in salt reabsorption via the Na+-Cl- cotransporter (NCC) of the distal convoluted tubule (DCT), which minimizes electroneutral K+ loss in downstream nephron segments. In experimental conditions of dietary K+ depletion, punctate structures in the DCT containing crucial NCC-regulating kinases have been discovered in the murine DCT and termed "WNK bodies," referring to their component, with no K (lysine) kinases (WNKs). We hypothesized that in humans, WNK bodies occur in hypokalemia as well. Renal needle biopsies of patients with chronic hypokalemic nephropathy and appropriate controls were examined by histological stains and immunofluorescence. Segment- and organelle-specific marker proteins were used to characterize the intrarenal and subcellular distribution of established WNK body constituents, namely, WNKs and Ste20-related proline-alanine-rich kinase (SPAK). In both patients with hypokalemia, WNKs and SPAK concentrated in non-membrane-bound cytoplasmic regions in the DCT, consistent with prior descriptions of WNK bodies. The putative WNK bodies were located in the perinuclear region close to, but not within, the endoplasmic reticulum. They were closely adjacent to microtubules but not clustered in aggresomes. Notably, we provide the first report of WNK bodies, which are functionally challenging structures associated with K+ deficiency, in human patients.


Asunto(s)
Hipopotasemia/enzimología , Enfermedades Renales/enzimología , Túbulos Renales Distales/enzimología , Potasio/sangre , Proteínas Serina-Treonina Quinasas/análisis , Biomarcadores/sangre , Estudios de Casos y Controles , Humanos , Hipopotasemia/sangre , Hipopotasemia/patología , Enfermedades Renales/sangre , Enfermedades Renales/patología , Túbulos Renales Distales/ultraestructura , Complejos Multienzimáticos , Proteína Quinasa Deficiente en Lisina WNK 1/análisis
7.
Nephrol Dial Transplant ; 34(Suppl 3): iii26-iii35, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800077

RESUMEN

Hypertension is common in the general population. Management of hypertensive patients at risk of hyperkalemia is challenging due to potential life-threatening complications such as cardiac arrest. Chronic hyperkalemia is often associated with impaired renal ability to excrete excessive potassium ions (K+). This may refer to chronic kidney disease or certain pharmacological interventions, including broadly used renin-angiotensin-aldosterone system and calcineurin inhibitors. Understanding the intrinsic mechanisms permitting kidney adaptations to hyperkalemia is critical for choosing therapeutic strategies. Valuable insights were obtained from the analysis of familial hyperkalemic hypertension (FHHt) syndrome, which became a classic model for coincidence of high blood pressure and hyperkalemia. FHHt can be caused by mutations in several genes, all of them resulting in excessive activity of with-no-lysine kinases (WNKs) in the distal nephron of the kidney. WNKs have been increasingly recognized as key signalling enzymes in the regulation of renal sodium ions (Na+) and K+ handling, enabling adaptive responses to systemic shifts of potassium homoeostasis consequent to variations in dietary potassium intake or disease. The WNK signalling pathway recruits a complex protein network mediating catalytic and non-catalytic effects of distinct WNK isoforms on relevant Na+- or K+-transporting proteins. In this review article, we summarize recent progress in understanding WNK signalling. An update of available models for renal adaptation to hyperkalemic conditions is presented. Consequences for blood pressure regulation are discussed. Pharmacological targeting of WNKs or their substrates offers promising options to manage hypertension while preventing hyperkalemia.


Asunto(s)
Presión Sanguínea/fisiología , Hiperpotasemia/fisiopatología , Hipertensión/fisiopatología , Potasio/sangre , Biomarcadores/sangre , Humanos , Hiperpotasemia/sangre , Hiperpotasemia/etiología , Hipertensión/complicaciones , Hipertensión/metabolismo
8.
J Am Soc Nephrol ; 29(3): 857-868, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29237740

RESUMEN

Collecting ducts make up the distal-most tubular segments of the kidney, extending from the cortex, where they connect to the nephron proper, into the medulla, where they release urine into the renal pelvis. During water deprivation, body water preservation is ensured by the selective transepithelial reabsorption of water into the hypertonic medullary interstitium mediated by collecting ducts. The collecting duct epithelium forms tight junctions composed of barrier-enforcing claudins and exhibits a higher transepithelial resistance than other segments of the renal tubule exhibit. However, the functional relevance of this strong collecting duct epithelial barrier is unresolved. Here, we report that collecting duct-specific deletion of an epithelial transcription factor, grainyhead-like 2 (GRHL2), in mice led to reduced expression of tight junction-associated barrier components, reduced collecting duct transepithelial resistance, and defective renal medullary accumulation of sodium and other osmolytes. In vitro, Grhl2-deficient collecting duct cells displayed increased paracellular flux of sodium, chloride, and urea. Consistent with these effects, Grhl2-deficient mice had diabetes insipidus, produced dilute urine, and failed to adequately concentrate their urine after water restriction, resulting in susceptibility to prerenal azotemia. These data indicate a direct functional link between collecting duct epithelial barrier characteristics, which appear to prevent leakage of interstitial osmolytes into urine, and body water homeostasis.


Asunto(s)
Epitelio/fisiología , Túbulos Renales Colectores/fisiología , Osmorregulación/genética , Uniones Estrechas/genética , Uniones Estrechas/fisiología , Factores de Transcripción/genética , Animales , Acuaporina 2/metabolismo , Acuaporina 4/metabolismo , Arginina Vasopresina/metabolismo , Azotemia/etiología , Transporte Biológico/genética , Creatinina/orina , Perfilación de la Expresión Génica , Masculino , Ratones , Concentración Osmolar , Transducción de Señal , Urea/metabolismo , Orina , Agua/metabolismo , Privación de Agua/fisiología
9.
Kidney Int ; 93(3): 580-588, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29129401

RESUMEN

The tight junction proteins claudin-10 and -16 are crucial for the paracellular reabsorption of cations along the thick ascending limb of Henle's loop in the kidney. In patients, mutations in CLDN16 cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis, while mutations in CLDN10 impair kidney function. Mice lacking claudin-16 display magnesium and calcium wasting, whereas absence of claudin-10 results in hypermagnesemia and interstitial nephrocalcinosis. In order to study the functional interdependence of claudin-10 and -16 we generated double-deficient mice. These mice had normal serum magnesium and urinary excretion of magnesium and calcium and showed polyuria and sodium retention at the expense of increased renal potassium excretion, but no nephrocalcinosis. Isolated thick ascending limb tubules of double mutants displayed a complete loss of paracellular cation selectivity and functionality. Mice lacking both claudin-10 and -16 in the thick ascending limb recruited downstream compensatory mechanisms and showed hypertrophic distal convoluted tubules with changes in gene expression and phosphorylation of ion transporters in this segment, presumably triggered by the mild decrease in serum potassium. Thus, severe individual phenotypes in claudin-10 and claudin-16 knockout mice are corrected by the additional deletion of the other claudin.


Asunto(s)
Claudinas/deficiencia , Hipercalciuria/prevención & control , Túbulos Renales Distales/metabolismo , Asa de la Nefrona/metabolismo , Deficiencia de Magnesio/prevención & control , Animales , Calcio/metabolismo , Claudinas/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Predisposición Genética a la Enfermedad , Hipercalciuria/genética , Hipercalciuria/metabolismo , Hipercalciuria/fisiopatología , Túbulos Renales Distales/patología , Túbulos Renales Distales/fisiopatología , Asa de la Nefrona/patología , Asa de la Nefrona/fisiopatología , Magnesio/metabolismo , Deficiencia de Magnesio/genética , Deficiencia de Magnesio/metabolismo , Deficiencia de Magnesio/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Nefrocalcinosis/genética , Nefrocalcinosis/metabolismo , Nefrocalcinosis/fisiopatología , Nefrocalcinosis/prevención & control , Fenotipo , Sodio/metabolismo
10.
Kidney Int ; 94(3): 491-501, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29861059

RESUMEN

Fibroblast growth factor 23 (FGF23) is a proteohormone regulating renal phosphate transport and vitamin D metabolism as well as inducing left heart hypertrophy. FGF23-deficient mice suffer from severe tissue calcification, accelerated aging and a myriad of aging-associated diseases. Bone cells produce FGF23 upon store-operated calcium ion entry (SOCE) through the calcium selective ion channel Orai1. AMP-activated kinase (AMPK) is a powerful energy sensor helping cells survive states of energy deficiency, and AMPK down-regulates Orai1. Here we investigated the role of AMPK in FGF23 production. Fgf23 gene transcription was analyzed by qRT-PCR and SOCE by fluorescence optics in UMR106 osteoblast-like cells while the serum FGF23 concentration and phosphate metabolism were assessed in AMPKα1-knockout and wild-type mice. The AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) down-regulated, whereas the AMPK inhibitor, dorsomorphin dihydrochloride (compound C) and AMPK gene silencing induced Fgf23 transcription. AICAR decreased membrane abundance of Orai1 and SOCE. SOCE inhibitors lowered Fgf23 gene expression induced by AMPK inhibition. AMPKα1-knockout mice had a higher serum FGF23 concentration compared to wild-type mice. Thus, AMPK participates in the regulation of FGF23 production in vitro and in vivo. The inhibitory effect of AMPK on FGF23 production is at least in part mediated by Orai1-involving SOCE.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Riñón/metabolismo , Proteína ORAI1/metabolismo , Fosfatos/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Riñón/efectos de los fármacos , Ratones , Ratones Noqueados , Pirazoles/farmacología , Pirimidinas/farmacología , Ratas , Eliminación Renal/efectos de los fármacos , Ribonucleótidos/farmacología , Regulación hacia Arriba/efectos de los fármacos
11.
Pflugers Arch ; 469(7-8): 889-897, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28577072

RESUMEN

Vasopressin (AVP) induces antidiuresis, thus playing an essential role in body water and electrolyte homeostasis. Its antidiuretic effects are mediated chiefly by V2 vasopressin receptors (V2R) expressed along the distal nephron and collecting duct epithelia. NaCl reabsorption in the distal nephron, which includes the thick ascending limb (TAL) and distal convoluted tubule (DCT), largely depends on the activity of two structurally related Na-(K)-Cl cotransporters, NKCC2 in TAL and NCC in DCT. AVP-induced activation of these transporters contributes to urine concentration and renal electrolyte reabsorption. Previous work has specified molecular pathways mediating the effects of V2R activation in TAL and DCT, and protein networks involved in intracellular trafficking and phosphoregulation of the two transporters have been identified. This review summarizes recent progress in understanding AVP signalling mechanisms that are responsible for the activation of NKCC2 and NCC. Implications in the pathophysiology of diseases such as nephrogenic diabetes insipidus, diabetes mellitus and salt-sensitive hypertension are discussed in this context.


Asunto(s)
Túbulos Renales Distales/metabolismo , Asa de la Nefrona/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Vasopresinas/metabolismo , Animales , Humanos , Transducción de Señal
12.
Curr Opin Nephrol Hypertens ; 26(5): 392-397, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28614115

RESUMEN

PURPOSE OF REVIEW: The kidney Na-K-2Cl cotransporter (NKCC2) is essential for urinary concentration and renal electrolyte handling. Loss of function mutations in the NKCC2 gene cause urinary salt and potassium wasting, whereas excessive NKCC2 function has been linked to high blood pressure. Loop diuretics, targeting the transporter, are instrumental for relieving edema or hypertension. This review focuses on intrinsic mechanisms regulating NKCC2 activity at the posttranslational level, namely its trafficking and phosphorylation. RECENT FINDINGS: Protein networks mediating cellular turnover of NKCC2 have recently received major attention. Several key components of its apical trafficking were identified, including respective chaperones, SNARE protein family members and raft-associated proteins. NKCC2 internalization has been characterized qualitatively and quantitatively. Kinase and phosphatase pathways regulating NKCC2 activity have been clarified and links between NKCC2 phosphorylation and trafficking proposed. Constitutive and inducible NKCC2 trafficking and phosphorylation mechanisms have been specified with focus on endocrine control of thick ascending limb (TAL) function by vasopressin. SUMMARY: Proper NKCC2 trafficking and phosphorylation are critical to the TAL function in the physiological context of urinary concentration and extracellular volume regulation. Clarification of the underlying mechanisms and respective protein networks may open new therapeutic perspectives for better management of renal electrolyte disorders and blood pressure control.


Asunto(s)
Riñón/metabolismo , Fosforilación , Transporte de Proteínas , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Humanos , Transporte Iónico , Asa de la Nefrona/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas SNARE/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/genética
13.
J Am Soc Nephrol ; 27(5): 1456-64, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26432904

RESUMEN

Tacrolimus is a widely used immunosuppressive drug that inhibits the phosphatase calcineurin when bound to the 12 kDa FK506-binding protein (FKBP12). When this binding occurs in T cells, it leads to immunosuppression. Tacrolimus also causes side effects, however, such as hypertension and hyperkalemia. Previously, we reported that tacrolimus stimulates the renal thiazide-sensitive sodium chloride cotransporter (NCC), which is necessary for the development of hypertension. However, it was unclear if tacrolimus-induced hypertension resulted from tacrolimus effects in renal epithelial cells directly or in extrarenal tissues, and whether inhibition of calcineurin was required. To address these questions, we developed a mouse model in which FKBP12 could be deleted along the nephron. FKBP12 disruption alone did not cause phenotypic effects. When treated with tacrolimus, however, BP and the renal abundance of phosphorylated NCC were lower in mice lacking FKBP12 along the nephron than in control mice. Mice lacking FKBP12 along the nephron also maintained a normal relationship between plasma potassium levels and the abundance of phosphorylated NCC with tacrolimus treatment. In cultured cells, tacrolimus inhibited dephosphorylation of NCC. Together, these results suggest that tacrolimus causes hypertension predominantly by inhibiting calcineurin directly in cells expressing NCC, indicating thiazide diuretics may be particularly effective for lowering BP in tacrolimus-treated patients with hypertension.


Asunto(s)
Hipertensión/inducido químicamente , Hipertensión/prevención & control , Inmunosupresores/efectos adversos , Proteína 1A de Unión a Tacrolimus/fisiología , Tacrolimus/efectos adversos , Animales , Eliminación de Gen , Riñón , Masculino , Ratones , Proteína 1A de Unión a Tacrolimus/genética
14.
J Am Soc Nephrol ; 27(1): 107-19, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25967121

RESUMEN

The furosemide-sensitive Na(+)-K(+)-2Cl(-)-cotransporter (NKCC2) is crucial for NaCl reabsorption in kidney thick ascending limb (TAL) and drives the urine concentrating mechanism. NKCC2 activity is modulated by N-terminal phosphorylation and dephosphorylation. Serine-threonine kinases that activate NKCC2 have been identified, but less is known about phosphatases that deactivate NKCC2. Inhibition of calcineurin phosphatase has been shown to stimulate transport in the TAL and the distal convoluted tubule. Here, we identified NKCC2 as a target of the calcineurin Aß isoform. Short-term cyclosporine administration in mice augmented the abundance of phospho-NKCC2, and treatment of isolated TAL with cyclosporine increased the chloride affinity and transport activity of NKCC2. Because sorting-related receptor with A-type repeats (SORLA) may affect NKCC2 phosphoregulation, we used SORLA-knockout mice to test whether SORLA is involved in calcineurin-dependent modulation of NKCC2. SORLA-deficient mice showed more calcineurin Aß in the apical region of TAL cells and less NKCC2 phosphorylation and activity compared with littermate controls. In contrast, overexpression of SORLA in cultured cells reduced the abundance of endogenous calcineurin Aß. Cyclosporine administration rapidly normalized the abundance of phospho-NKCC2 in SORLA-deficient mice, and a functional interaction between calcineurin Aß and SORLA was further corroborated by binding assays in rat kidney extracts. In summary, we have shown that calcineurin Aß and SORLA are key components in the phosphoregulation of NKCC2. These results may have clinical implications for immunosuppressive therapy using calcineurin inhibitors.


Asunto(s)
Calcineurina/fisiología , Riñón/metabolismo , Proteínas de Transporte de Membrana/fisiología , Receptores de LDL/fisiología , Simportadores de Cloruro de Sodio-Potasio/fisiología , Animales , Masculino , Ratones , Fosforilación , Ratas , Ratas Sprague-Dawley
15.
Am J Physiol Renal Physiol ; 311(2): F411-23, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27306979

RESUMEN

The antidiuretic hormone vasopressin (AVP) regulates renal salt and water reabsorption along the distal nephron and collecting duct system. These effects are mediated by vasopressin 2 receptors (V2R) and release of intracellular Gs-mediated cAMP to activate epithelial transport proteins. Inactivating mutations in the V2R gene lead to the X-linked form of nephrogenic diabetes insipidus (NDI), which has chiefly been related with impaired aquaporin 2-mediated water reabsorption in the collecting ducts. Previous work also suggested the AVP-V2R-mediated activation of Na(+)-K(+)-2Cl(-)-cotransporters (NKCC2) along the thick ascending limb (TAL) in the context of urine concentration, but its individual contribution to NDI or, more generally, to overall renal function was unclear. We hypothesized that V2R-mediated effects in TAL essentially determine its reabsorptive function. To test this, we reevaluated V2R expression. Basolateral membranes of medullary and cortical TAL were clearly stained, whereas cells of the macula densa were unreactive. A dominant-negative, NDI-causing truncated V2R mutant (Ni3-Glu242stop) was then introduced into the rat genome under control of the Tamm-Horsfall protein promoter to cause a tissue-specific AVP-signaling defect exclusively in TAL. Resulting Ni3-V2R transgenic rats revealed decreased basolateral but increased intracellular V2R signal in TAL epithelia, suggesting impaired trafficking of the receptor. Rats displayed significant baseline polyuria, failure to concentrate the urine in response to water deprivation, and hypercalciuria. NKCC2 abundance, phosphorylation, and surface expression were markedly decreased. In summary, these data indicate that suppression of AVP-V2R signaling in TAL causes major impairment in renal fluid and electrolyte handling. Our results may have clinical implications.


Asunto(s)
Riñón/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Vasopresinas/genética , Vasopresinas/fisiología , Animales , Proteínas Portadoras/metabolismo , AMP Cíclico/metabolismo , Ciclooxigenasa 2/metabolismo , Diabetes Insípida Nefrogénica/genética , Epitelio/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Aparato Yuxtaglomerular/metabolismo , Riñón/ultraestructura , Corteza Renal/metabolismo , Médula Renal/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Receptores de Vasopresinas/genética , Miembro 1 de la Familia de Transportadores de Soluto 12/genética , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo
16.
Am J Physiol Renal Physiol ; 311(6): F1198-F1210, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27681558

RESUMEN

Activation of the thick ascending limb (TAL) Na+-K+-2Cl- cotransporter (NKCC2) by the antidiuretic hormone arginine vasopressin (AVP) is an essential mechanism of renal urine concentration and contributes to extracellular fluid and electrolyte homeostasis. AVP effects in the kidney are modulated by locally and/or by systemically produced epoxyeicosatrienoic acid derivates (EET). The relation between AVP and EET metabolism has not been determined. Here, we show that chronic treatment of AVP-deficient Brattleboro rats with the AVP V2 receptor analog desmopressin (dDAVP; 5 ng/h, 3 days) significantly lowered renal EET levels (-56 ± 3% for 5,6-EET, -50 ± 3.4% for 11,12-EET, and -60 ± 3.7% for 14,15-EET). The abundance of the principal EET-degrading enzyme soluble epoxide hydrolase (sEH) was increased at the mRNA (+160 ± 37%) and protein levels (+120 ± 26%). Immunohistochemistry revealed dDAVP-mediated induction of sEH in connecting tubules and cortical and medullary collecting ducts, suggesting a role of these segments in the regulation of local interstitial EET signals. Incubation of murine kidney cell suspensions with 1 µM 14,15-EET for 30 min reduced phosphorylation of NKCC2 at the AVP-sensitive threonine residues T96 and T101 (-66 ± 5%; P < 0.05), while 14,15-DHET had no effect. Concomitantly, isolated perfused cortical thick ascending limb pretreated with 14,15-EET showed a 30% lower transport current under high and a 70% lower transport current under low symmetric chloride concentrations. In summary, we have shown that activation of AVP signaling stimulates renal sEH biosynthesis and enzyme activity. The resulting reduction of EET tissue levels may be instrumental for increased NKCC2 transport activity during AVP-induced antidiuresis.


Asunto(s)
Desamino Arginina Vasopresina/farmacología , Eicosanoides/metabolismo , Epóxido Hidrolasas/metabolismo , Riñón/efectos de los fármacos , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Riñón/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Ratas , Ratas Brattleboro
17.
Proc Natl Acad Sci U S A ; 110(35): 14366-71, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940364

RESUMEN

Large deletions in the first intron of the With No lysine (K) 1 (WNK1) gene are responsible for Familial Hyperkalemic Hypertension (FHHt), a rare form of human hypertension associated with hyperkalemia and hyperchloremic metabolic acidosis. We generated a mouse model of WNK1-associated FHHt to explore the consequences of this intronic deletion. WNK1(+/FHHt) mice display all clinical and biological signs of FHHt. This phenotype results from increased expression of long WNK1 (L-WNK1), the ubiquitous kinase isoform of WNK1, in the distal convoluted tubule, which in turn, stimulates the activity of the Na-Cl cotransporter. We also show that the activity of the epithelial sodium channel is not altered in FHHt mice, suggesting that other mechanisms are responsible for the hyperkalemia and acidosis in this model. Finally, we observe a decreased expression of the renal outer medullary potassium channel in the late distal convoluted tubule of WNK1(+/FHHt) mice, which could contribute to the hyperkalemia. In summary, our study provides insights into the in vivo mechanisms underlying the pathogenesis of WNK1-mediated FHHt and further corroborates the importance of WNK1 in ion homeostasis and blood pressure.


Asunto(s)
Túbulos Renales Distales/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Seudohipoaldosteronismo/genética , Animales , Canales Epiteliales de Sodio/metabolismo , Eliminación de Gen , Ratones , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor , Canales de Potasio de Rectificación Interna/genética , Seudohipoaldosteronismo/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1
18.
J Biol Chem ; 289(14): 9983-97, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24526686

RESUMEN

The furosemide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) is responsible for urine concentration and helps maintain systemic salt homeostasis. Its activity depends on trafficking to, and insertion into, the apical membrane, as well as on phosphorylation of conserved N-terminal serine and threonine residues. Vasopressin (AVP) signaling via PKA and other kinases activates NKCC2. Association of NKCC2 with lipid rafts facilitates its AVP-induced apical translocation and activation at the surface. Lipid raft microdomains typically serve as platforms for membrane proteins to facilitate their interactions with other proteins, but little is known about partners that interact with NKCC2. Yeast two-hybrid screening identified an interaction between NKCC2 and the cytosolic protein, annexin A2 (AnxA2). Annexins mediate lipid raft-dependent trafficking of transmembrane proteins, including the AVP-regulated water channel, aquaporin 2. Here, we demonstrate that AnxA2, which binds to phospholipids in a Ca(2+)-dependent manner and may organize microdomains, is codistributed with NKCC2 to promote its apical translocation in response to AVP stimulation and low chloride hypotonic stress. NKCC2 and AnxA2 interact in a phosphorylation-dependent manner. Phosphomimetic AnxA2 carrying a mutant phosphoacceptor (AnxA2-Y24D-GFP) enhanced surface expression and raft association of NKCC2 by 5-fold upon low chloride hypotonic stimulation, whereas AnxA2-Y24A-GFP and PKC-dependent AnxA2-S26D-GFP did not. As the AnxA2 effect involved only nonphosphorylated NKCC2, it appears to affect NKCC2 trafficking. Overexpression or knockdown experiments further supported the role of AnxA2 in the apical translocation and surface expression of NKCC2. In summary, this study identifies AnxA2 as a lipid raft-associated trafficking factor for NKCC2 and provides mechanistic insight into the regulation of this essential cotransporter.


Asunto(s)
Anexina A2/metabolismo , Microdominios de Membrana/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Sustitución de Aminoácidos , Animales , Anexina A2/genética , Fármacos Antidiuréticos/farmacología , Células HEK293 , Humanos , Macaca mulatta , Masculino , Microdominios de Membrana/genética , Mutación Missense , Fosforilación/efectos de los fármacos , Fosforilación/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Miembro 1 de la Familia de Transportadores de Soluto 12/genética , Vasopresinas/farmacología
19.
Proc Natl Acad Sci U S A ; 109(35): 14241-6, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22891322

RESUMEN

In the kidney, tight junction proteins contribute to segment specific selectivity and permeability of paracellular ion transport. In the thick ascending limb (TAL) of Henle's loop, chloride is reabsorbed transcellularly, whereas sodium reabsorption takes transcellular and paracellular routes. TAL salt transport maintains the concentrating ability of the kidney and generates a transepithelial voltage that drives the reabsorption of calcium and magnesium. Thus, functionality of TAL ion transport depends strongly on the properties of the paracellular pathway. To elucidate the role of the tight junction protein claudin-10 in TAL function, we generated mice with a deletion of Cldn10 in this segment. We show that claudin-10 determines paracellular sodium permeability, and that its loss leads to hypermagnesemia and nephrocalcinosis. In isolated perfused TAL tubules of claudin-10-deficient mice, paracellular permeability of sodium is decreased, and the relative permeability of calcium and magnesium is increased. Moreover, furosemide-inhibitable transepithelial voltage is increased, leading to a shift from paracellular sodium transport to paracellular hyperabsorption of calcium and magnesium. These data identify claudin-10 as a key factor in control of cation selectivity and transport in the TAL, and deficiency in this pathway as a cause of nephrocalcinosis.


Asunto(s)
Claudinas/metabolismo , Asa de la Nefrona/metabolismo , Magnesio/sangre , Enfermedades Metabólicas/fisiopatología , Nefrocalcinosis/fisiopatología , Sodio/metabolismo , Animales , Transporte Biológico/genética , Transporte Biológico/fisiología , Calcio/metabolismo , Claudinas/genética , Ingestión de Líquidos/fisiología , Células Madre Embrionarias/fisiología , Eliminación de Gen , Homeostasis/genética , Homeostasis/fisiología , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Noqueados , Nefrocalcinosis/genética , Nefrocalcinosis/metabolismo , Fenotipo , Privación de Agua/fisiología
20.
J Am Soc Nephrol ; 24(3): 407-18, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23393317

RESUMEN

Activation of the Na(+)-K(+)-2Cl(-)-cotransporter (NKCC2) and the Na(+)-Cl(-)-cotransporter (NCC) by vasopressin includes their phosphorylation at defined, conserved N-terminal threonine and serine residues, but the kinase pathways that mediate this action of vasopressin are not well understood. Two homologous Ste20-like kinases, SPS-related proline/alanine-rich kinase (SPAK) and oxidative stress responsive kinase (OSR1), can phosphorylate the cotransporters directly. In this process, a full-length SPAK variant and OSR1 interact with a truncated SPAK variant, which has inhibitory effects. Here, we tested whether SPAK is an essential component of the vasopressin stimulatory pathway. We administered desmopressin, a V2 receptor-specific agonist, to wild-type mice, SPAK-deficient mice, and vasopressin-deficient rats. Desmopressin induced regulatory changes in SPAK variants, but not in OSR1 to the same degree, and activated NKCC2 and NCC. Furthermore, desmopressin modulated both the full-length and truncated SPAK variants to interact with and phosphorylate NKCC2, whereas only full-length SPAK promoted the activation of NCC. In summary, these results suggest that SPAK mediates the effect of vasopressin on sodium reabsorption along the distal nephron.


Asunto(s)
Desamino Arginina Vasopresina/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Animales , Activación Enzimática/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Brattleboro , Receptores de Vasopresinas/agonistas , Miembro 1 de la Familia de Transportadores de Soluto 12
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA