Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Biol ; 19(5): e3001252, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33983919

RESUMEN

The mitochondrial ATP synthase emerges as key hub of cellular functions controlling the production of ATP, cellular signaling, and fate. It is regulated by the ATPase inhibitory factor 1 (IF1), which is highly abundant in neurons. Herein, we ablated or overexpressed IF1 in mouse neurons to show that IF1 dose defines the fraction of active/inactive enzyme in vivo, thereby controlling mitochondrial function and the production of mitochondrial reactive oxygen species (mtROS). Transcriptomic, proteomic, and metabolomic analyses indicate that IF1 dose regulates mitochondrial metabolism, synaptic function, and cognition. Ablation of IF1 impairs memory, whereas synaptic transmission and learning are enhanced by IF1 overexpression. Mechanistically, quenching the IF1-mediated increase in mtROS production in mice overexpressing IF1 reduces the increased synaptic transmission and obliterates the learning advantage afforded by the higher IF1 content. Overall, IF1 plays a key role in neuronal function by regulating the fraction of ATP synthase responsible for mitohormetic mtROS signaling.


Asunto(s)
Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , ATPasas de Translocación de Protón Mitocondriales/fisiología , Cultivo Primario de Células , Proteínas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína Inhibidora ATPasa
2.
Redox Biol ; 66: 102862, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37660443

RESUMEN

The retina is particularly vulnerable to genetic and environmental alterations that generate oxidative stress and cause cellular damage in photoreceptors and other retinal neurons, eventually leading to cell death. CERKL (CERamide Kinase-Like) mutations cause Retinitis Pigmentosa and Cone-Rod Dystrophy in humans, two disorders characterized by photoreceptor degeneration and progressive vision loss. CERKL is a resilience gene against oxidative stress, and its overexpression protects cells from oxidative stress-induced apoptosis. Besides, CERKL contributes to stress granule-formation and regulates mitochondrial dynamics in the retina. Using the CerklKD/KO albino mouse model, which recapitulates the human disease, we aimed to study the impact of Cerkl knockdown on stress response and activation of photoreceptor death mechanisms upon light/oxidative stress. After acute light injury, we assessed immediate or late retinal stress response, by combining both omic and non-omic approaches. Our results show that Cerkl knockdown increases ROS levels and causes a basal exacerbated stress state in the retina, through alterations in glutathione metabolism and stress granule production, overall compromising an adequate response to additional oxidative damage. As a consequence, several cell death mechanisms are triggered in CerklKD/KO retinas after acute light stress. Our studies indicate that Cerkl gene is a pivotal player in regulating light-challenged retinal homeostasis and shed light on how mutations in CERKL lead to blindness by dysregulation of the basal oxidative stress response in the retina.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol) , Degeneración Retiniana , Retinitis Pigmentosa , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Homeostasis , Estrés Oxidativo , Retina , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
3.
Cell Death Dis ; 14(7): 413, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37433784

RESUMEN

ATPase Inhibitory Factor 1 (IF1) regulates the activity of mitochondrial ATP synthase. The expression of IF1 in differentiated human and mouse cells is highly variable. In intestinal cells, the overexpression of IF1 protects against colon inflammation. Herein, we have developed a conditional IF1-knockout mouse model in intestinal epithelium to investigate the role of IF1 in mitochondrial function and tissue homeostasis. The results show that IF1-ablated mice have increased ATP synthase/hydrolase activities, leading to profound mitochondrial dysfunction and a pro-inflammatory phenotype that impairs the permeability of the intestinal barrier compromising mouse survival upon inflammation. Deletion of IF1 prevents the formation of oligomeric assemblies of ATP synthase and alters cristae structure and the electron transport chain. Moreover, lack of IF1 promotes an intramitochondrial Ca2+ overload in vivo, minimizing the threshold to Ca2+-induced permeability transition (mPT). Removal of IF1 in cell lines also prevents the formation of oligomeric assemblies of ATP synthase, minimizing the threshold to Ca2+-induced mPT. Metabolomic analyses of mice serum and colon tissue highlight that IF1 ablation promotes the activation of de novo purine and salvage pathways. Mechanistically, lack of IF1 in cell lines increases ATP synthase/hydrolase activities and installs futile ATP hydrolysis in mitochondria, resulting in the activation of purine metabolism and in the accumulation of adenosine, both in culture medium and in mice serum. Adenosine, through ADORA2B receptors, promotes an autoimmune phenotype in mice, stressing the role of the IF1/ATP synthase axis in tissue immune responses. Overall, the results highlight that IF1 is required for ATP synthase oligomerization and that it acts as a brake to prevent ATP hydrolysis under in vivo phosphorylating conditions in intestinal cells.


Asunto(s)
Adenosina , Inflamación , Proteínas Mitocondriales , Animales , Humanos , Ratones , Adenosina Trifosfato , Diferenciación Celular , Ratones Noqueados , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Inhibidora ATPasa
4.
Cell Death Dis ; 13(6): 561, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732639

RESUMEN

Tubular aggregates (TA) are honeycomb-like arrays of sarcoplasmic-reticulum (SR) tubules affecting aged glycolytic fibers of male individuals and inducing severe sarcomere disorganization and muscular pain. TA develop in skeletal muscle from Tubular Aggregate Myopathy (TAM) patients as well as in other disorders including endocrine syndromes, diabetes, and ageing, being their primary cause unknown. Nowadays, there is no cure for TA. Intriguingly, both hypoxia and calcium dyshomeostasis prompt TA formation, pointing to a possible role for mitochondria in their setting. However, a functional link between mitochondrial dysfunctions and TA remains unknown. Herein, we investigate the alteration in muscle-proteome of TAM patients, the molecular mechanism of TA onset and a potential therapy in a preclinical mouse model of the disease. We show that in vivo chronic inhibition of the mitochondrial ATP synthase in muscle causes TA. Upon long-term restrained oxidative phosphorylation (OXPHOS), oxidative soleus experiments a metabolic and structural switch towards glycolytic fibers, increases mitochondrial fission, and activates mitophagy to recycle damaged mitochondria. TA result from the overresponse of the fission controller DRP1, that upregulates the Store-Operate-Calcium-Entry and increases the mitochondria-SR interaction in a futile attempt to buffer calcium overloads upon prolonged OXPHOS inhibition. Accordingly, hypoxic muscles cultured ex vivo show an increase in mitochondria/SR contact sites and autophagic/mitophagic zones, where TA clusters grow around defective mitochondria. Moreover, hypoxia triggered a stronger TA formation upon ATP synthase inhibition, and this effect was reduced by the DRP1 inhibitor mDIVI. Remarkably, the muscle proteome of TAM patients displays similar alterations in mitochondrial dynamics and in ATP synthase contents. In vivo edaravone treatment in mice with restrained OXPHOS restored a healthy phenotype by prompting mitogenesis and mitochondrial fusion. Altogether, our data provide a functional link between the ATP synthase/DRP1 axis and the setting of TA, and repurpose edaravone as a possible treatment for TA-associated disorders.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales , Retículo Sarcoplasmático , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Edaravona/metabolismo , Humanos , Hipoxia/metabolismo , Masculino , Ratones , Dinámicas Mitocondriales/fisiología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Retículo Sarcoplasmático/metabolismo
5.
Oncogenesis ; 11(1): 24, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534478

RESUMEN

Lung cancer is the leading cause of cancer-related death worldwide despite the success of therapies targeting oncogenic drivers and immune-checkpoint inhibitors. Although metabolic enzymes offer additional targets for therapy, the precise metabolic proteome of lung adenocarcinomas is unknown, hampering its clinical translation. Herein, we used Reverse Phase Protein Arrays to quantify the changes in enzymes of glycolysis, oxidation of pyruvate, fatty acid metabolism, oxidative phosphorylation, antioxidant response and protein oxidative damage in 128 tumors and paired non-tumor adjacent tissue of lung adenocarcinomas to profile the proteome of metabolism. Steady-state levels of mitochondrial proteins of fatty acid oxidation, oxidative phosphorylation and of the antioxidant response are independent predictors of survival and/or of disease recurrence in lung adenocarcinoma patients. Next, we addressed the mechanisms by which the overexpression of ATPase Inhibitory Factor 1, the physiological inhibitor of oxidative phosphorylation, which is an independent predictor of disease recurrence, prevents metastatic disease. We highlight that IF1 overexpression promotes a more vulnerable and less invasive phenotype in lung adenocarcinoma cells. Finally, and as proof of concept, the therapeutic potential of targeting fatty acid assimilation or oxidation in combination with an inhibitor of oxidative phosphorylation was studied in mice bearing lung adenocarcinomas. The results revealed that this therapeutic approach significantly extended the lifespan and provided better welfare to mice than cisplatin treatments, supporting mitochondrial activities as targets of therapy in lung adenocarcinoma patients.

6.
Nat Commun ; 11(1): 3606, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681016

RESUMEN

Mitochondrial metabolism has emerged as a promising target against the mechanisms of tumor growth. Herein, we have screened an FDA-approved library to identify drugs that inhibit mitochondrial respiration. The ß1-blocker nebivolol specifically hinders oxidative phosphorylation in cancer cells by concertedly inhibiting Complex I and ATP synthase activities. Complex I inhibition is mediated by interfering the phosphorylation of NDUFS7. Inhibition of the ATP synthase is exerted by the overexpression and binding of the ATPase Inhibitory Factor 1 (IF1) to the enzyme. Remarkably, nebivolol also arrests tumor angiogenesis by arresting endothelial cell proliferation. Altogether, targeting mitochondria and angiogenesis triggers a metabolic and oxidative stress crisis that restricts the growth of colon and breast carcinomas. Nebivolol holds great promise to be repurposed for the treatment of cancer patients.


Asunto(s)
Antagonistas Adrenérgicos/farmacología , Inductores de la Angiogénesis/farmacología , Neoplasias de la Mama/fisiopatología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/fisiopatología , Mitocondrias/efectos de los fármacos , Nebivolol/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Femenino , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Proteínas/genética , Proteínas/metabolismo , Proteína Inhibidora ATPasa
7.
Cell Rep ; 19(6): 1202-1213, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494869

RESUMEN

Mitochondria are signaling hubs in cellular physiology that play a role in inflammatory diseases. We found that partial inhibition of the mitochondrial ATP synthase in the intestine of transgenic mice triggers an anti-inflammatory response through NFκB activation mediated by mitochondrial mtROS. This shielding phenotype is revealed when mice are challenged by DSS-induced colitis, which, in control animals, triggers inflammation, recruitment of M1 pro-inflammatory macrophages, and the activation of the pro-oncogenic STAT3 and Akt/mTOR pathways. In contrast, transgenic mice can polarize macrophages to the M2 anti-inflammatory phenotype. Using the mitochondria-targeted antioxidant MitoQ to quench mtROS in vivo, we observe decreased NFκB activation, preventing its cellular protective effects. These findings stress the relevance of mitochondrial signaling to the innate immune system and emphasize the potential role of the ATP synthase as a therapeutic target in inflammatory and other related diseases.


Asunto(s)
Colitis Ulcerosa/inmunología , Intestinos/inmunología , Activación de Macrófagos , Macrófagos/inmunología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Inmunidad Innata , Intestinos/citología , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , ATPasas de Translocación de Protón Mitocondriales/metabolismo , FN-kappa B/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
8.
Oncotarget ; 7(1): 490-508, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26595676

RESUMEN

The ATPase Inhibitory Factor 1 (IF1) is an inhibitor of the mitochondrial H+-ATP synthase that regulates the activity of both oxidative phosphorylation (OXPHOS) and cell death. Here, we have developed transgenic Tet-On and Tet-Off mice that express a mutant active form of hIF1 in the hepatocytes to restrain OXPHOS in the liver to investigate the relevance of mitochondrial activity in hepatocarcinogenesis. The expression of hIF1 promotes the inhibition of OXPHOS in both Tet-On and Tet-Off mouse models and induces a state of metabolic preconditioning guided by the activation of the stress kinases AMPK and p38 MAPK. Expression of the transgene significantly augmented proliferation and apoptotic resistance of carcinoma cells, which contributed to an enhanced diethylnitrosamine-induced liver carcinogenesis. Moreover, the expression of hIF1 also diminished acetaminophen-induced apoptosis, which is unrelated to differences in permeability transition pore opening. Mechanistically, cell survival in hIF1-preconditioned hepatocytes results from a nuclear factor-erythroid 2-related factor (Nrf2)-guided antioxidant response. The results emphasize in vivo that a metabolic phenotype with a restrained OXPHOS in the liver is prone to the development of cancer.


Asunto(s)
Regulación hacia Abajo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Fosforilación Oxidativa , Proteínas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetaminofén/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Supervivencia Celular/genética , Expresión Génica , Humanos , Hígado/patología , Hígado/ultraestructura , Neoplasias Hepáticas/genética , Ratones Transgénicos , Microscopía Electrónica , Microscopía Fluorescente , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Proteínas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína Inhibidora ATPasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA