Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Blood ; 142(5): 421-433, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37146250

RESUMEN

Although BCL2 mutations are reported as later occurring events leading to venetoclax resistance, many other mechanisms of progression have been reported though remain poorly understood. Here, we analyze longitudinal tumor samples from 11 patients with disease progression while receiving venetoclax to characterize the clonal evolution of resistance. All patients tested showed increased in vitro resistance to venetoclax at the posttreatment time point. We found the previously described acquired BCL2-G101V mutation in only 4 of 11 patients, with 2 patients showing a very low variant allele fraction (0.03%-4.68%). Whole-exome sequencing revealed acquired loss(8p) in 4 of 11 patients, of which 2 patients also had gain (1q21.2-21.3) in the same cells affecting the MCL1 gene. In vitro experiments showed that CLL cells from the 4 patients with loss(8p) were more resistant to venetoclax than cells from those without it, with the cells from 2 patients also carrying gain (1q21.2-21.3) showing increased sensitivity to MCL1 inhibition. Progression samples with gain (1q21.2-21.3) were more susceptible to the combination of MCL1 inhibitor and venetoclax. Differential gene expression analysis comparing bulk RNA sequencing data from pretreatment and progression time points of all patients showed upregulation of proliferation, B-cell receptor (BCR), and NF-κB gene sets including MAPK genes. Cells from progression time points demonstrated upregulation of surface immunoglobulin M and higher pERK levels compared with those from the preprogression time point, suggesting an upregulation of BCR signaling that activates the MAPK pathway. Overall, our data suggest several mechanisms of acquired resistance to venetoclax in CLL that could pave the way for rationally designed combination treatments for patients with venetoclax-resistant CLL.


Asunto(s)
Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Humanos , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Resistencia a Antineoplásicos/genética , Secuenciación del Exoma , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogénicas c-bcl-2
2.
Blood ; 138(1): 44-56, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33684943

RESUMEN

Inhibitors of Bruton tyrosine kinase (BTK) and phosphatidylinositol 3-kinase δ (PI3Kδ) that target the B-cell receptor (BCR) signaling pathway have revolutionized the treatment of chronic lymphocytic leukemia (CLL). Mutations associated with resistance to BTK inhibitors have been identified, but limited data are available on mechanisms of resistance to PI3Kδ inhibitors. Here we present findings from longitudinal whole-exome sequencing of cells from patients with multiply relapsed CLL (N = 28) enrolled in trials of PI3K inhibitors. The nonresponder subgroup was characterized by baseline activating mutations in MAP2K1, BRAF, and KRAS genes in 60% of patients. PI3Kδ inhibition failed to inhibit ERK phosphorylation (pERK) in nonresponder CLL cells with and without mutations, whereas treatment with a MEK inhibitor rescued ERK inhibition. Overexpression of MAP2K1 mutants in vitro led to increased basal and inducible pERK and resistance to idelalisib. These data demonstrate that MAPK/ERK activation plays a key role in resistance to PI3Kδ inhibitors in CLL and provide a rationale for therapy with a combination of PI3Kδ and ERK inhibitors.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/enzimología , Sistema de Señalización de MAP Quinasas , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Adulto , Anciano , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Genoma Humano , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Persona de Mediana Edad , Mutación/genética , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Purinas/farmacología , Purinas/uso terapéutico , Quinazolinonas/farmacología , Quinazolinonas/uso terapéutico , Resultado del Tratamiento , Regulación hacia Arriba/genética
3.
J Allergy Clin Immunol ; 139(4): 1228-1241, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27913303

RESUMEN

BACKGROUND: Filaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations. OBJECTIVE: We hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease. RESULTS: We describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype. CONCLUSION: Our findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Catepsina H/metabolismo , Dermatitis Atópica/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Western Blotting , Catepsina H/deficiencia , Dermatitis Atópica/patología , Proteínas Filagrina , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína Reguladora Asociada a mTOR , Piel/metabolismo , Piel/patología
4.
Res Sq ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38313250

RESUMEN

We retrospectively analyzed 609 chronic lymphocytic leukemia (CLL) patients treated with BTK inhibitors (BTKis) at Dana-Farber Cancer Institute from 2014 to 2022. Among them, 85 underwent next-generation sequencing (NGS) during or after BTKi therapy (ibrutinib, 64; acalabrutinib, 13; pirtobrutinib, 7; vecabrutinib, 1). Patients with NGS at progression (N=36, PD group) showed more 17p deletion, complex karyotype, and previous treatments including BTKi, compared to ongoing responders (N=49, NP group). 216 variants were found in 57 genes across both groups, with more variants in the PD group (158 variants, 70.3% pathogenic, P<0.001). The PD group had a higher incidence of pathogenic variants (70.3%, P<0.001), including 32 BTK(BTK C481S/F/R/Y, L528W, and T474I/L) and 4 PLCG2mutations. Notably, a high VAF L528W mutation was found in a first line ibrutinib-resistant patient. TP53, SF3B1, and NOTCH2mutations were also significantly more prevalent in the PD group (P<0.01, P<0.05, P<0.05). Additionally, MAPK pathway gene mutations trended more common and had higher VAFs in the PD group (P=0.041). T474 mutations were found in 4 of 6 patients progressing on pirtobrutinib, and BTK L528W mutation can arise with both covalent and non-covalent BTKi therapy. These results also suggest that RAS/RAF/MAPK pathway mutations may contribute to BTKi resistance.

5.
Blood Adv ; 7(9): 1929-1943, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36287227

RESUMEN

Covalent inhibitors of Bruton tyrosine kinase (BTK) have transformed the therapy of chronic lymphocytic leukemia (CLL), but continuous therapy has been complicated by the development of resistance. The most common resistance mechanism in patients whose disease progresses on covalent BTK inhibitors (BTKis) is a mutation in the BTK 481 cysteine residue to which the inhibitors bind covalently. Pirtobrutinib is a highly selective, noncovalent BTKi with substantial clinical activity in patients whose disease has progressed on covalent BTKi, regardless of BTK mutation status. Using in vitro ibrutinib-resistant models and cells from patients with CLL, we show that pirtobrutinib potently inhibits BTK-mediated functions including B-cell receptor (BCR) signaling, cell viability, and CCL3/CCL4 chemokine production in both BTK wild-type and C481S mutant CLL cells. We demonstrate that primary CLL cells from responding patients on the pirtobrutinib trial show reduced BCR signaling, cell survival, and CCL3/CCL4 chemokine secretion. At time of progression, these primary CLL cells show increasing resistance to pirtobrutinib in signaling inhibition, cell viability, and cytokine production. We employed longitudinal whole-exome sequencing on 2 patients whose disease progressed on pirtobrutinib and identified selection of alternative-site BTK mutations, providing clinical evidence that secondary BTK mutations lead to resistance to noncovalent BTKis.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Agammaglobulinemia Tirosina Quinasa , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Quimiocina CCL4/genética , Quimiocina CCL4/uso terapéutico , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Mutación
6.
Humanit Soc Sci Commun ; 9(1): 467, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589254

RESUMEN

COVID-19 vaccination is the only pharmaceutical measure available to control the pandemic and move past the current crisis. As such, the Maldives, a small island country, invested heavily on securing and vaccinating the eligible population through an intensive risk communication campaign to create awareness on vaccination benefits. This paper reports on the vaccine coverage after a year of COVID-19 vaccine being introduced into the country, based on data obtained from the Values in Crisis Survey - Wave Two among Maldivian adults (n = 497). The findings show a vaccine coverage of 94%, with only 2.2% of the respondents indicating they will not get vaccinated. No significant differences were observed by age, gender, income earning, educational status or residential area. No significant relationship was observed in vaccine behaviour and confidence in government, health sector and experts. Social value orientations, particularly conservation and self-transcendence value orientations determined positive vaccine behaviour (r s = 0.180, p < 0.01 and 0.136 p < 0.01 respectively), yet conservation was the only predictor that contributed significantly to the regression model (B = 0.158, p < 0.01). The findings indicate that, despite the uncertainties around COVID-19 vaccinations, the prosocial value orientations were instrumental in achieving a high COVID-19 vaccine coverage. Further theoretical and conceptual exploration of vaccine behaviour in crisis situations is needed to inform future pandemic situations. The vaccination rollout and behaviour change strategies also need an examination of social value orientations in order to achieve a high coverage and sustain pro-vaccine behaviour post-pandemic.

7.
J Invest Dermatol ; 140(4): 774-784.e11, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31626786

RESUMEN

Varicella zoster virus (VZV) is a skin-tropic virus that infects epidermal keratinocytes and causes chickenpox. Although common, VZV infection can be life-threatening, particularly in the immunocompromized. Therefore, understanding VZV-keratinocyte interactions is important to find new treatments beyond vaccination and antiviral drugs. In VZV-infected skin, kallikrein 6 and the ubiquitin ligase MDM2 are upregulated concomitant with keratin 10 (KRT10) downregulation. MDM2 binds to KRT10, targeting it for degradation via the ubiquitin-proteasome pathway. Preventing KRT10 degradation reduced VZV propagation in culture and prevented epidermal disruption in skin explants. KRT10 knockdown induced expression of NR4A1 and enhanced viral propagation in culture. NR4A1 knockdown prevented viral propagation in culture, reduced LC3 levels, and increased LAMP2 expression. We therefore describe a drug-able pathway whereby MDM2 ubiquitinates and degrades KRT10, increasing NR4A1 expression and allowing VZV replication and propagation.


Asunto(s)
Regulación de la Expresión Génica , Herpes Zóster/genética , Herpes Zóster/metabolismo , Herpesvirus Humano 3/fisiología , Queratina-10/genética , Queratinocitos/patología , ARN/genética , Replicación Viral , Herpes Zóster/virología , Humanos , Queratina-10/biosíntesis , Queratinocitos/metabolismo , Queratinocitos/virología
8.
Cell Death Dis ; 9(4): 412, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29545605

RESUMEN

Epidermal stratification critically depends on keratinocyte differentiation and programmed death by cornification, leading to formation of a protective skin barrier. Cornification is dynamically controlled by the protein filaggrin, rapidly released from keratohyalin granules (KHGs). However, the mechanisms of cornification largely remain elusive, partly due to limitations of the observation techniques employed to study filaggrin organization in keratinocytes. Moreover, while the abundance of keratins within KHGs has been well described, it is not clear whether actin also contributes to their formation or fate. We employed advanced (super-resolution) microscopy to examine filaggrin organization and dynamics in skin and human keratinocytes during differentiation. We found that filaggrin organization depends on the cytoplasmic actin cytoskeleton, including the role for α- and ß-actin scaffolds. Filaggrin-containing KHGs displayed high mobility and migrated toward the nucleus during differentiation. Pharmacological disruption targeting actin networks resulted in granule disintegration and accelerated cornification. We identified the role of AKT serine/threonine kinase 1 (AKT1), which controls binding preference and function of heat shock protein B1 (HspB1), facilitating the switch from actin stabilization to filaggrin processing. Our results suggest an extended model of cornification in which filaggrin utilizes actins to effectively control keratinocyte differentiation and death, promoting epidermal stratification and formation of a fully functional skin barrier.


Asunto(s)
Actinas/metabolismo , Epidermis/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Organogénesis , Actinas/química , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Calcio/farmacología , Diferenciación Celular/efectos de los fármacos , Citocalasina D/farmacología , Gránulos Citoplasmáticos/metabolismo , Epidermis/patología , Proteínas Filagrina , Proteínas de Choque Térmico/metabolismo , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Queratinas/metabolismo , Chaperonas Moleculares/metabolismo , Organogénesis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Tiazolidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA