Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 41(4): 409-18, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21329879

RESUMEN

Polyadenylation of mRNA precursors is frequently coupled to transcription by RNA polymerase II. Although this coupling is known to involve interactions with the C-terminal domain of the RNA polymerase II largest subunit, the possible role of other factors is not known. Here we show that a prototypical transcriptional activator, GAL4-VP16, stimulates transcription-coupled polyadenylation in vitro. In the absence of GAL4-VP16, specifically initiated transcripts accumulated but little polyadenylation was observed, while in its presence polyadenylation was strongly enhanced. We further show that this stimulation requires the transcription elongation-associated PAF complex (PAF1c), as PAF1c depletion blocked GAL4-VP16-stimulated polyadenylation. Furthermore, knockdown of PAF subunits by siRNA resulted in decreased 3' cleavage, and nuclear export, of mRNA in vivo. Finally, we show that GAL4-VP16 interacts directly with PAF1c and recruits it to DNA templates. Our results indicate that a transcription activator can stimulate transcription-coupled 3' processing and does so via interaction with PAF1c.


Asunto(s)
Poliadenilación , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Transactivadores/metabolismo , Células Cultivadas , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Transactivadores/genética , Transcripción Genética , Transfección
2.
Nucleic Acids Res ; 45(12): e117, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28525643

RESUMEN

Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information.


Asunto(s)
Aptámeros de Nucleótidos/síntesis química , Técnicas Biosensibles/métodos , Separación Celular/métodos , Biosíntesis de Proteínas , ARN Mensajero/química , Animales , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Sitios de Unión , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Conformación de Ácido Nucleico , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transfección
3.
Nucleic Acids Res ; 45(9): 5423-5436, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28119416

RESUMEN

Human RNA methyltransferase BCDIN3D is overexpressed in breast cancer cells, and is related to the tumorigenic phenotype and poor prognosis of breast cancer. Here, we show that cytoplasmic tRNAHis is the primary target of BCDIN3D in human cells. Recombinant human BCDIN3D, expressed in Escherichia coli, monomethylates the 5΄-monophosphate of cytoplasmic tRNAHis efficiently in vitro. In BCDN3D-knockout cells, established by CRISPR/Cas9 editing, the methyl moiety at the 5΄-monophosphate of cytoplasmic tRNAHis is lost, and the exogenous expression of BCDIN3D in the knockout cells restores the modification in cytoplasmic tRNAHis. BCIDN3D recognizes the 5΄-guanosine nucleoside at position -1 (G-1) and the eight-nucleotide acceptor helix with the G-1-A73 mis-pair at the top of the acceptor stem of cytoplasmic tRNAHis, which are exceptional structural features among cytoplasmic tRNA species. While the monomethylation of the 5΄-monophosphate of cytoplasmic tRNAHis affects neither the overall aminoacylation process in vitro nor the steady-state level of cytoplasmic tRNAHisin vivo, it protects the cytoplasmic tRNAHis transcript from degradation in vitro. Thus, BCDIN3D acts as a cytoplasmic tRNAHis-specific 5΄-methylphosphate capping enzyme. The present results also suggest the possible involvement of the monomethylation of the 5΄-monophosphate of cytoplasmic tRNAHis and/or cytoplasmic tRNAHis itself in the tumorigenesis of breast cancer cells.


Asunto(s)
Metiltransferasas/metabolismo , ARN de Transferencia de Histidina/metabolismo , Aminoacilación , Secuencia de Bases , Citoplasma/metabolismo , Células HEK293 , Humanos , Metilación , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN de Transferencia de Histidina/química , ARN de Transferencia de Histidina/genética
4.
Nature ; 467(7316): 729-33, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20861839

RESUMEN

Symplekin (Pta1 in yeast) is a scaffold in the large protein complex that is required for 3'-end cleavage and polyadenylation of eukaryotic messenger RNA precursors (pre-mRNAs); it also participates in transcription initiation and termination by RNA polymerase II (Pol II). Symplekin mediates interactions between many different proteins in this machinery, although the molecular basis for its function is not known. Here we report the crystal structure at 2.4 Å resolution of the amino-terminal domain (residues 30-340) of human symplekin in a ternary complex with the Pol II carboxy-terminal domain (CTD) Ser 5 phosphatase Ssu72 (refs 7, 10-17) and a CTD Ser 5 phosphopeptide. The N-terminal domain of symplekin has the ARM or HEAT fold, with seven pairs of antiparallel α-helices arranged in the shape of an arc. The structure of Ssu72 has some similarity to that of low-molecular-mass phosphotyrosine protein phosphatase, although Ssu72 has a unique active-site landscape as well as extra structural features at the C terminus that are important for interaction with symplekin. Ssu72 is bound to the concave face of symplekin, and engineered mutations in this interface can abolish interactions between the two proteins. The CTD peptide is bound in the active site of Ssu72, with the pSer 5-Pro 6 peptide bond in the cis configuration, which contrasts with all other known CTD peptide conformations. Although the active site of Ssu72 is about 25 Å from the interface with symplekin, we found that the symplekin N-terminal domain stimulates Ssu72 CTD phosphatase activity in vitro. Furthermore, the N-terminal domain of symplekin inhibits polyadenylation in vitro, but only when coupled to transcription. Because catalytically active Ssu72 overcomes this inhibition, our results show a role for mammalian Ssu72 in transcription-coupled pre-mRNA 3'-end processing.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosfopéptidos/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/genética , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Drosophila/química , Humanos , Modelos Moleculares , Proteínas Nucleares/genética , Fosfopéptidos/química , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Poliadenilación , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato , Factores de Escisión y Poliadenilación de ARNm/química
5.
Proc Natl Acad Sci U S A ; 106(3): 755-60, 2009 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-19136632

RESUMEN

The CDC73 tumor suppressor gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. Its product, the Cdc73 protein, is a component of the RNA polymerase II and chromatin-associated human Paf1 complex (Paf1C). Here, we show that Cdc73 physically associates with the cleavage and polyadenylation specificity factor (CPSF) and cleavage stimulation factor (CstF) complexes that are required for the maturation of mRNA 3' ends in the cell nucleus. Immunodepletion experiments indicate that the Cdc73-CPSF-CstF complex is necessary for 3' mRNA processing in vitro. Microarray analysis of CDC73 siRNA-treated cells revealed INTS6, a gene encoding a subunit of the Integrator complex, as an in vivo Cdc73 target. Cdc73 depletion by siRNA resulted in decreased INTS6 mRNA abundance, and decreased association of CPSF and CstF subunits with the INTS6 locus. Our results suggest that Cdc73 facilitates association of 3' mRNA processing factors with actively-transcribed chromatin and support the importance of links between tumor suppression and mRNA maturation.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/fisiología , Factor de Estimulación del Desdoblamiento/fisiología , ARN Mensajero/metabolismo , Proteínas Supresoras de Tumor/fisiología , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Estimulación del Desdoblamiento/química , Humanos , Proteínas de Unión al ARN , Proteínas Ribosómicas/genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
7.
RNA Biol ; 8(6): 964-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21941122

RESUMEN

3' processing of mRNA precursors is frequently coupled to transcription by RNA polymerase II (RNAP II). This coupling is well known to involve the C-terminal domain of the RNAP II largest subunit, but a variety of other transcription-associated factors have also been suggested to mediate coupling. Our recent studies have provided direct evidence that transcriptional activators can enhance the efficiency of transcription-coupled 3' processing. In this point-of-view, we discuss the mechanisms that underlie coupling, and their implications for control of alternative polyadenylation, which is emerging as a significant regulator of cell growth control.


Asunto(s)
Poliadenilación , Precursores del ARN/genética , Transactivadores/metabolismo , Activación Transcripcional , Regiones no Traducidas 3'/genética , Animales , Humanos , Modelos Genéticos , Poli A/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Transcripción Genética
8.
Biochim Biophys Acta ; 1779(4): 266-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18312863

RESUMEN

Polyadenylation in animal mitochondria is very unique. Unlike other systems, polyadenylation is needed to generate UAA stop codons that are not encoded in mitochondrial (mt) DNA. In some cases, polyadenylation is required for the mt tRNA maturation by editing of its 3' termini. Furthermore, recent studies on human mt poly(A) polymerase (PAP) and PNPase provide new insights and questions for the regulatory mechanism and functional role of polyadenylation in human mitochondria.


Asunto(s)
Codón de Terminación/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Poliadenilación/fisiología , Polinucleotido Adenililtransferasa/metabolismo , Animales , Codón de Terminación/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Polinucleotido Adenililtransferasa/genética
10.
Nat Commun ; 10(1): 1960, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036859

RESUMEN

Lin28-dependent oligo-uridylylation of precursor let-7 (pre-let-7) by terminal uridylyltransferase 4/7 (TUT4/7) represses let-7 expression by blocking Dicer processing, and regulates cell differentiation and proliferation. The interaction between the Lin28:pre-let-7 complex and the N-terminal Lin28-interacting module (LIM) of TUT4/7 is required for pre-let-7 oligo-uridylylation by the C-terminal catalytic module (CM) of TUT4/7. Here, we report crystallographic and biochemical analyses of the LIM of human TUT4. The LIM consists of the N-terminal Cys2His2-type zinc finger (ZF) and the non-catalytic nucleotidyltransferase domain (nc-NTD). The ZF of LIM adopts a distinct structural domain, and its structure is homologous to those of double-stranded RNA binding zinc fingers. The interaction between the ZF and pre-let-7 stabilizes the Lin28:pre-let-7:TUT4 ternary complex, and enhances the oligo-uridylylation reaction by the CM. Thus, the ZF in LIM and the zinc-knuckle in the CM, which interacts with the oligo-uridylylated tail, together facilitate Lin28-dependent pre-let-7 oligo-uridylylation.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , MicroARNs/metabolismo , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Humanos , MicroARNs/genética , Unión Proteica , ARN Nucleotidiltransferasas/genética , Proteínas de Unión al ARN/genética
11.
Life (Basel) ; 8(4)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400226

RESUMEN

Membrane proteins are important drug targets which play a pivotal role in various cellular activities. However, unlike cytosolic proteins, most of them are difficult-to-express proteins. In this study, to synthesize and produce sufficient quantities of membrane proteins for functional and structural analysis, we used a bottom-up approach in a reconstituted cell-free synthesis system, the PURE system, supplemented with artificial lipid mimetics or micelles. Membrane proteins were synthesized by the cell-free system and integrated into lipid bilayers co-translationally. Membrane proteins such as the G-protein coupled receptors were expressed in the PURE system and a productivity ranging from 0.04 to 0.1 mg per mL of reaction was achieved with a correct secondary structure as predicted by circular dichroism spectrum. In addition, a ligand binding constant of 27.8 nM in lipid nanodisc and 39.4 nM in micelle was obtained by surface plasmon resonance and the membrane protein localization was confirmed by confocal microscopy in giant unilamellar vesicles. We found that our method is a promising approach to study the different classes of membrane proteins in their native-like artificial lipid bilayer environment for functional and structural studies.

12.
Nat Commun ; 8: 15788, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28589955

RESUMEN

The terminal uridylyltransferase, TUT1, builds or repairs the 3'-oligo-uridylylated tail of U6 snRNA. The 3'-oligo-uridylylated tail is the Lsm-binding site for U4/U6 di-snRNP formation and U6 snRNA recycling for pre-mRNA splicing. Here, we report crystallographic and biochemical analyses of human TUT1, which revealed the mechanisms for the specific uridylylation of the 3'-end of U6 snRNA by TUT1. The O2 and O4 atoms of the UTP base form hydrogen bonds with the conserved His and Asn in the catalytic pocket, respectively, and TUT1 preferentially incorporates UMP onto the 3'-end of RNAs. TUT1 recognizes the entire U6 snRNA molecule by its catalytic domains, N-terminal RNA-recognition motifs and a previously unidentified C-terminal RNA-binding domain. Each domain recognizes specific regions within U6 snRNA, and the recognition is coupled with the domain movements and U6 snRNA structural changes. Hence, TUT1 functions as the U6 snRNA-specific terminal uridylyltransferase required for pre-mRNA splicing.


Asunto(s)
Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , ARN Nuclear Pequeño/metabolismo , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Nucleotidiltransferasas/genética , Dominios Proteicos , Empalme del ARN , Especificidad por Sustrato
13.
Methods Mol Biol ; 1125: 65-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24590780

RESUMEN

In vitro assays have provided a valuable tool to study the mechanism of 3' processing of eukaryotic mRNA precursors and have contributed a great deal to the identification of factors that carry out and regulate 3' processing. Previously, we have shown that transcriptional activators directly enhance polyadenylation by utilizing in vitro transcription-coupled polyadenylation with the prototypical transcription activator GAL4-VP16. In this chapter, we describe a detailed protocol for this assay, which will be useful in examining potential roles for other transcription-related factors in 3' processing and other questions related to the coupling of transcription and mRNA polyadenylation.


Asunto(s)
Poliadenilación/fisiología , ARN Mensajero/metabolismo , Transactivadores/metabolismo
14.
Structure ; 19(2): 232-43, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21300291

RESUMEN

PolyA polymerase (PAP) adds a polyA tail onto the 3'-end of RNAs without a nucleic acid template, using adenosine-5'-triphosphate (ATP) as a substrate. The mechanism for the substrate selection by eubacterial PAP remains obscure. Structural and biochemical studies of Escherichia coli PAP (EcPAP) revealed that the shape and size of the nucleobase-interacting pocket of EcPAP are maintained by an intra-molecular hydrogen-network, making it suitable for the accommodation of only ATP, using a single amino acid, Arg(197). The pocket structure is sustained by interactions between the catalytic domain and the RNA-binding domain. EcPAP has a flexible basic C-terminal region that contributes to optimal RNA translocation for processive adenosine 5'-monophosphate (AMP) incorporations onto the 3'-end of RNAs. A comparison of the EcPAP structure with those of other template-independent RNA polymerases suggests that structural changes of domain(s) outside the conserved catalytic core domain altered the substrate specificities of the template-independent RNA polymerases.


Asunto(s)
Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN/metabolismo , Secuencia de Aminoácidos , Arginina/química , Arginina/genética , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Moldes Genéticos
15.
J Biol Chem ; 280(20): 19721-7, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15769737

RESUMEN

Mammalian mitochondrial (mt) mRNAs have short poly(A) tails at their 3' termini that are post-transcriptionally synthesized by mt poly(A) polymerase (PAP). The polyadenylation of mt mRNAs is known to be a key process needed to create UAA stop codons that are not encoded in mtDNA. In some cases, polyadenylation is required for the tRNA maturation by editing of its 3' terminus. However, little is known about the functional roles the poly(A) tail of mt mRNAs plays in mt translation and RNA turnover. Here we show human mt PAP (hmtPAP) and human polynucleotide phosphorylase (hPNPase) control poly(A) synthesis in human mitochondria. Partial inactivation of hmtPAP by RNA interference using small interfering RNA in HeLa cells resulted in shortened poly(A) tails and decreased steady state levels of some mt mRNAs as well as their translational products. Moreover, knocking down hmtPAP generated markedly defective mt membrane potentials and reduced oxygen consumption. In contrast, knocking down hPNPase showed significantly extended poly(A) tails of mt mRNAs. These results demonstrate that the poly(A) length of human mt mRNAs is controlled by polyadenylation by hmtPAP and deadenylation by hPNPase, and polyadenylation is required for the stability of mt mRNAs.


Asunto(s)
Polinucleotido Adenililtransferasa/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Mensajero/metabolismo , ARN/metabolismo , Secuencia de Bases , ADN Complementario/genética , Células HeLa , Humanos , Técnicas In Vitro , Mitocondrias/metabolismo , Modelos Moleculares , Polinucleotido Adenililtransferasa/antagonistas & inhibidores , Polinucleotido Adenililtransferasa/genética , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mitocondrial , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfección
16.
J Biol Chem ; 278(19): 16828-33, 2003 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-12621050

RESUMEN

Pathogenic point mutations in mitochondrial tRNA genes are known to cause a variety of human mitochondrial diseases. Reports have associated an A4317G mutation in the mitochondrial tRNA(Ile) gene with fatal infantile cardiomyopathy and an A10044G mutation in the mitochondrial tRNA(Gly) gene with sudden infant death syndrome. Here we demonstrate that both mutations inhibit in vitro CCA-addition to the respective tRNA by the human mitochondrial CCA-adding enzyme. Structures of these two mutant tRNAs were examined by nuclease probing. In the case of the A4317G tRNA(Ile) mutant, structural rearrangement of the T-arm region, conferring an aberrantly stable T-arm structure and an increased T(m) value, was clearly observed. In the case of the A10044G tRNA(Gly) mutant, high nuclease sensitivity in both the T- and D-loops suggested a weakened interaction between the loops. These are the first reported instances of inefficient CCA-addition being one of the apparent molecular pathogeneses caused by pathogenic point mutations in human mitochondrial tRNA genes.


Asunto(s)
ADN Mitocondrial/genética , Mutación , ARN de Transferencia de Isoleucina/genética , Humanos , Enfermedades Mitocondriales/etiología , Enfermedades Mitocondriales/genética , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia de Isoleucina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA