Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2319658121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442179

RESUMEN

Light-harvesting complexes (LHCs) are diversified among photosynthetic organisms, and the structure of the photosystem I-LHC (PSI-LHCI) supercomplex has been shown to be variable depending on the species of organisms. However, the structural and evolutionary correlations of red-lineage LHCs are unknown. Here, we determined a 1.92-Å resolution cryoelectron microscopic structure of a PSI-LHCI supercomplex isolated from the red alga Cyanidium caldarium RK-1 (NIES-2137), which is an important taxon in the Cyanidiophyceae. We subsequently investigated the correlations of PSI-LHCIs from different organisms through structural comparisons and phylogenetic analysis. The PSI-LHCI structure obtained shows five LHCI subunits surrounding a PSI-monomer core. The five LHCIs are composed of two Lhcr1s, two Lhcr2s, and one Lhcr3. Phylogenetic analysis of LHCs bound to PSI in the red-lineage algae showed clear orthology of LHCs between C. caldarium and Cyanidioschyzon merolae, whereas no orthologous relationships were found between C. caldarium Lhcr1-3 and LHCs in other red-lineage PSI-LHCI structures. These findings provide evolutionary insights into conservation and diversity of red-lineage LHCs associated with PSI.


Asunto(s)
Complejo de Proteína del Fotosistema I , Rhodophyta , Filogenia , Complejo de Proteína del Fotosistema I/genética , Evolución Biológica , Microscopía por Crioelectrón , Rhodophyta/genética
2.
Photosynth Res ; 161(3): 203-212, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38935195

RESUMEN

Acaryochloris species belong to a special category of cyanobacteria possessing chlorophyll (Chl) d. One of the photosynthetic characteristics of Acaryochloris marina MBIC11017 is that the absorption spectra of photosystem I (PSI) showed almost no bands and shoulders of low-energy Chls d over 740 nm. In contrast, the absorption spectra of other Acaryochloris species showed a shoulder around 740 nm, suggesting that low-energy Chls d within PSI are diversified among Acaryochloris species. In this study, we purified PSI trimer and monomer cores from Acaryochloris sp. NBRC 102871 and examined their protein and pigment compositions and spectral properties. The protein bands and pigment compositions of the PSI trimer and monomer of NBRC102871 were virtually identical to those of MBIC11017. The absorption spectra of the NBRC102871 PSIs exhibited a shoulder around 740 nm, whereas the fluorescence spectra of PSI trimer and monomer displayed maximum peaks at 754 and 767 nm, respectively. These spectral properties were different from those of MBIC11017, indicating the presence of low-energy Chls d within the NBRC102871 PSIs. Moreover, we analyzed the NBRC102871 genome to identify amino acid sequences of PSI proteins and compared them with those of the A. marina MBIC11017 and MBIC10699 strains whose genomes are available. The results showed that some of the sequences in NBRC102871 were distinct from those in MBIC11017 and MBIC10699. These findings provide insights into the variety of low-energy Chls d with respect to the protein environments of PSI cores among the three Acaryochloris strains.


Asunto(s)
Clorofila , Cianobacterias , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/química , Clorofila/metabolismo , Cianobacterias/metabolismo , Cianobacterias/genética , Espectrometría de Fluorescencia
3.
Photosynth Res ; 156(3): 315-323, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36781711

RESUMEN

Light-harvesting complexes (LHCs) have been diversified in oxygenic photosynthetic organisms, and play an essential role in capturing light energy which is transferred to two types of photosystem cores to promote charge-separation reactions. Red algae are one of the groups of photosynthetic eukaryotes, and their chlorophyll (Chl) a-binding LHCs are specifically associated with photosystem I (PSI). In this study, we purified three types of preparations, PSI-LHCI supercomplexes, PSI cores, and isolated LHCIs, from the red alga Cyanidium caldarium, and examined their properties. The polypeptide bands of PSI-LHCI showed characteristic PSI and LHCI components without contamination by other proteins. The carotenoid composition of LHCI displayed zeaxanthins, ß-cryptoxanthins, and ß-carotenes. Among the carotenoids, zeaxanthins were enriched in LHCI. On the contrary, both zeaxanthins and ß-cryptoxanthins could not be detected from PSI, suggesting that zeaxanthins and ß-cryptoxanthins are bound to LHCI but not PSI. A Qy peak of Chl a in the absorption spectrum of LHCI was shifted to a shorter wavelength than those in PSI and PSI-LHCI. This tendency is in line with the result of fluorescence-emission spectra, in which the emission maxima of PSI-LHCI, PSI, and LHCI appeared at 727, 719, and 677 nm, respectively. Time-resolved fluorescence spectra of LHCI represented no 719 and 727-nm fluorescence bands from picoseconds to nanoseconds. These results indicate that energy levels of Chls around/within LHCIs and within PSI are changed by binding LHCIs to PSI. Based on these findings, we discuss the expression, function, and structure of red algal PSI-LHCI supercomplexes.


Asunto(s)
Complejo de Proteína del Fotosistema I , Rhodophyta , Complejo de Proteína del Fotosistema I/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Zeaxantinas/metabolismo , Análisis Espectral , Clorofila A , Rhodophyta/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo
4.
Photosynth Res ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37751034

RESUMEN

Flash-induced absorption changes in the Soret region arising from the [PD1PD2]+ state, the chlorophyll cation radical formed upon light excitation of Photosystem II (PSII), were measured in Mn-depleted PSII cores at pH 8.6. Under these conditions, TyrD is i) reduced before the first flash, and ii) oxidized before subsequent flashes. In wild-type PSII, when TyrD● is present, an additional signal in the [PD1PD2]+-minus-[PD1PD2] difference spectrum was observed when compared to the first flash when TyrD is not oxidized. The additional feature was "W-shaped" with troughs at 434 nm and 446 nm. This feature was absent when TyrD was reduced, but was present (i) when TyrD was physically absent (and replaced by phenylalanine) or (ii) when its H-bonding histidine (D2-His189) was physically absent (replaced by a Leucine). Thus, the simple difference spectrum without the double trough feature at 434 nm and 446 nm, seemed to require the native structural environment around the reduced TyrD and its H bonding partners to be present. We found no evidence of involvement of PD1, ChlD1, PheD1, PheD2, TyrZ, and the Cytb559 heme in the W-shaped difference spectrum. However, the use of a mutant of the PD2 axial His ligand, the D2-His197Ala, shows that the PD2 environment seems involved in the formation of "W-shaped" signal.

5.
Photosynth Res ; 157(2-3): 55-63, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37199910

RESUMEN

Photosystem I (PSI) catalyzes light-induced electron-transfer reactions and has been observed to exhibit various oligomeric states and different energy levels of chlorophylls (Chls) in response to oligomerization. However, the biochemical and spectroscopic properties of a PSI monomer containing Chls d are not well understood. In this study, we successfully isolated and characterized PSI monomers from the cyanobacterium Acaryochloris marina MBIC11017, and compared their properties with those of the A. marina PSI trimer. The PSI trimers and monomers were prepared using trehalose density gradient centrifugation after anion-exchange and hydrophobic interaction chromatography. The polypeptide composition of the PSI monomer was found to be consistent with that of the PSI trimer. The absorption spectrum of the PSI monomer showed the Qy band of Chl d at 704 nm, which was blue-shifted from the peak at 707 nm observed in the PSI-trimer spectrum. The fluorescence-emission spectrum of the PSI monomer measured at 77 K exhibited a peak at 730 nm without a broad shoulder in the range of 745-780 nm, which was clearly observed in the PSI-trimer spectrum. These spectroscopic properties of the A. marina PSI trimer and monomer suggest different formations of low-energy Chls d between the two types of PSI cores. Based on these findings, we discuss the location of low-energy Chls d in A. marina PSIs.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Clorofila/química , Cianobacterias/metabolismo , Espectrometría de Fluorescencia
6.
Biochemistry ; 61(13): 1351-1362, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35686693

RESUMEN

In photosystem II (PSII), the secondary plastoquinone electron acceptor QB functions as a substrate that converts into plastoquinol upon its double reduction by electrons abstracted from water. It has been suggested that a histidine residue, D1-H252, which is located at the stromal surface near QB, is involved in the pH-dependent regulation of electron flow and proton transfer to QB. However, definitive evidence for the involvement of D1-H252 in the QB reactions has not been obtained yet. Here, we studied the roles of D1-H252 in PSII using a cyanobacterial mutant, in which D1-H252 was replaced with Ala. Delayed luminescence (DL) measurement upon a single flash showed a faster QB- decay at higher pH in the thylakoids from the wild-type strain due to the downshift of the redox potential of QB [Em(QB-/QB)]. This pH dependence of the QB- decay was lost in the D1-H252A mutant. The experimental Em(QB-/QB) changes were well reproduced by the density functional theory calculations for models with different protonation states of D1-H252 and with Ala replaced for H252. It was further shown that the period-four oscillation of the DL intensity by successive flashes was significantly diminished in the D1-H252A mutant, suggesting the inhibition of plastoquinone exchange at the QB pocket in this mutant. It is thus concluded that D1-H252 is a key amino acid residue that regulates electron flow in PSII by sensing pH in the stroma and stabilizes the QB binding site to facilitate the quinone exchange reaction.


Asunto(s)
Complejo de Proteína del Fotosistema II , Plastoquinona , Transporte de Electrón , Electrones , Histidina/genética , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Complejo de Proteína del Fotosistema II/química , Plastoquinona/metabolismo
7.
Photosynth Res ; 154(1): 13-19, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35951151

RESUMEN

Carotenoids (Cars) exhibit two functions in photosynthesis, light-harvesting and photoprotective functions, which are performed through the excited states of Cars. Therefore, increasing our knowledge on excitation relaxation dynamics of Cars is important for understanding of the functions of Cars. In light-harvesting complexes, there exist Cars functioning by converting the π-conjugation number in response to light conditions. It is well known that some microalgae have a mechanism controlling the conjugation number of Cars, called as the diadinoxanthin cycle; diadinoxanthin (10 conjugations) is accumulated under low light, whereas diatoxanthin (11 conjugations) appears under high light. However, the excitation relaxation dynamics of these two Cars have not been clarified. In the present study, we investigated excitation relaxation dynamics of diadinoxanthin and diatoxanthin in relation to their functions, by the ultrafast fluorescence spectroscopy. After an excitation to the S2 state, the intramolecular vibrational redistribution occurs, followed by the internal conversion to the S1 state. The S2 lifetimes were analyzed to be 175 fs, 155 fs, and 140 fs in diethyl ether, ethanol, and acetone, respectively, for diadinoxanthin, and 155 fs, 135 fs, and 125 fs in diethyl ether, ethanol, and acetone, respectively for diatoxanthin. By converting diadinoxanthin to diatoxanthin, the absorption spectra shift to longer wavelengths by 5-7 nm, and lifetimes of S2 and S1 states decrease by 11-13% and 52%, respectively. Differences in levels and lifetimes of excited states between diadinoxanthin and diatoxanthin are small; therefore, it is suggested that changes in the energy level of chlorophyll a are necessary to efficiently control the functions of the diadinoxanthin cycle.


Asunto(s)
Acetona , Carotenoides , Carotenoides/química , Clorofila/química , Clorofila A , Etanol , Éter , Complejos de Proteína Captadores de Luz/química , Xantófilas
8.
Physiol Plant ; 174(1): e13598, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34792189

RESUMEN

Diatoms adapt to various aquatic light environments and play major roles in the global carbon cycle using their unique light-harvesting system, i.e. fucoxanthin chlorophyll a/c binding proteins (FCPs). Structural analyses of photosystem II (PSII)-FCPII and photosystem I (PSI)-FCPI complexes from the diatom Chaetoceros gracilis have revealed the localization and interactions of many FCPs; however, the entire set of FCPs has not been characterized. Here, we identify 46 FCPs in the newly assembled genome and transcriptome of C. gracilis. Phylogenetic analyses suggest that these FCPs can be classified into five subfamilies: Lhcr, Lhcf, Lhcx, Lhcz, and the novel Lhcq, in addition to a distinct type of Lhcr, CgLhcr9. The FCPs in Lhcr, including CgLhcr9 and some Lhcqs, have orthologous proteins in other diatoms, particularly those found in the PSI-FCPI structure. By contrast, the Lhcf subfamily, some of which were found in the PSII-FCPII complex, seems to be diversified in each diatom species, and the number of Lhcqs differs among species, indicating that their diversification may contribute to species-specific adaptations to light. Further phylogenetic analyses of FCPs/light-harvesting complex (LHC) proteins using genome data and assembled transcriptomes of other diatoms and microalgae in public databases suggest that our proposed classification of FCPs is common among various red-lineage algae derived from secondary endosymbiosis of red algae, including Haptophyta. These results provide insights into the loss and gain of FCP/LHC subfamilies during the evolutionary history of the red algal lineage.


Asunto(s)
Proteínas de Unión a Clorofila , Diatomeas , Clorofila A/química , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Filogenia , Xantófilas
9.
Photosynth Res ; 149(3): 303-311, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34037905

RESUMEN

Photosynthetic organisms finely tune their photosynthetic machinery including pigment compositions and antenna systems to adapt to various light environments. However, it is poorly understood how the photosynthetic machinery in the green flagellate Euglena gracilis is modified under high-light conditions. In this study, we examined high-light modification of excitation-energy-relaxation processes in Euglena cells. Oxygen-evolving activity in the cells incubated at 300 µmol photons m-2 s-1 (HL cells) cannot be detected, reflecting severe photodamage to photosystem II (PSII) in vivo. Pigment compositions in the HL cells showed relative increases in 9'-cis-neoxanthin, diadinoxanthin, and chlorophyll b compared with the cells incubated at 30 µmol photons m-2 s-1 (LL cells). Absolute fluorescence spectra at 77 K exhibit smaller intensities of the PSII and photosystem I (PSI) fluorescence in the HL cells than in the LL cells. Absolute fluorescence decay-associated spectra at 77 K of the HL cells indicate suppression of excitation-energy transfer from light-harvesting complexes (LHCs) to both PSI and PSII with the time constant of 40 ps. Rapid energy quenching in LHCs and PSII in the HL cells is distinctly observed by averaged Chl-fluorescence lifetimes. These findings suggest that Euglena modifies excitation-energy-relaxation processes in addition to pigment compositions to deal with excess energy. These results provide insights into the photoprotection strategies of this alga under high-light conditions.


Asunto(s)
Adaptación Ocular/fisiología , Clorofila/metabolismo , Transferencia de Energía/fisiología , Euglena gracilis/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis/fisiología
10.
Photosynth Res ; 146(1-3): 189-195, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32114648

RESUMEN

CO2 concentration and temperature for growth of photosynthetic organisms are two important factors to ensure better photosynthetic performance. In this study, we investigated the effects of CO2 concentration and temperature on the photosynthetic performance in a marine centric diatom Chaetoceros gracilis. Cells were grown under four different conditions, namely, at 25 °C with air bubbling, at 25 °C with a supplementation of 3% CO2, at 30 °C with air bubbling, and at 30 °C with the CO2 supplementation. It was found that the growth rate of cells at 30 °C with the CO2 supplementation is faster than those at other three conditions. The pigment compositions of cells grown under the different conditions are altered, and fluorescence spectra measured at 77 K also showed different peak positions. A novel fucoxanthin chlorophyll a/c-binding protein complex is observed in the cells grown at 30 °C with the CO2 supplementation but not in the other three types of cells. Since oxygen-evolving activities of the four types of cells are almost unchanged, it is suggested that the CO2 supplementation and growth temperature are involved in the regulation of photosynthetic light-harvesting apparatus in C. gracilis at different degrees. Based on these observations, we discuss the favorable growth conditions for C. gracilis.


Asunto(s)
Dióxido de Carbono/farmacología , Diatomeas/fisiología , Fotosíntesis/fisiología , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A/metabolismo , Diatomeas/metabolismo , Fluorescencia , Temperatura , Xantófilas/metabolismo
11.
Photosynth Res ; 146(1-3): 87-93, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31970552

RESUMEN

Diatoms are a major group of microalgae in marine and freshwater environments. To utilize the light energy in blue to green region, diatoms possess unique antenna pigment-protein complexes, fucoxanthin chlorophyll a/c-binding proteins (FCPs). Depending on light qualities and quantities, diatoms form FCPs with different energies: normal-type and red-shifted FCPs. In the present study, we examined changes in light-harvesting and energy-transfer processes of a diatom Chaetoceros gracilis cells grown using white- and single-colored light-emitting diodes (LEDs), by means of time-resolved fluorescence spectroscopy. The blue LED, which is harvested by FCPs, modified energy transfer involving CP47, and suppressed energy transfer to PSI. Under the red-LED conditions, which is absorbed by both FCPs and PSs, energy transfer to PSI was enhanced, and the red-shifted FCP appeared. The red-shifted FCP was also recognized under the green- and yellow-LEDs, suggesting that lack of the shorter-wavelength light induces the red-shifted FCP. Functions of the red-shifted FCPs are discussed.


Asunto(s)
Diatomeas/metabolismo , Transferencia de Energía , Adaptación Fisiológica , Clorofila/metabolismo , Diatomeas/efectos de la radiación , Luz , Espectrometría de Fluorescencia
12.
Photosynth Res ; 146(1-3): 227-234, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31965467

RESUMEN

Fucoxanthin-chlorophyll (Chl) a/c-binding proteins (FCPs) are light-harvesting pigment-protein complexes found in diatoms and brown algae. Due to the characteristic pigments, such as fucoxanthin and Chl c, FCPs can capture light energy in blue-to green regions. A pennate diatom Phaeodactylum tricornutum synthesizes a red-shifted form of FCP under weak or red light, extending a light-absorption ability to longer wavelengths. In the present study, we examined changes in light-harvesting and energy-transfer processes of P. tricornutum cells grown under white- and single-colored light-emitting diodes (LEDs). The red-shifted FCP appears in the cells grown under the green, yellow, and red LEDs, and exhibited a fluorescence peak around 714 nm. Additional energy-transfer pathways are established in the red-shifted FCP; two forms (F713 and F718) of low-energy Chl a work as energy traps at 77 K. Averaged fluorescence lifetimes are prolonged in the cells grown under the yellow and red LEDs, whereas they are shortened in the blue-LED-grown cells. Based on these results, we discussed the light-adaptation machinery of P. tricornutum cells involved in the red-shifted FCP.


Asunto(s)
Proteínas de Unión a Clorofila/metabolismo , Diatomeas/metabolismo , Aclimatación , Adaptación Fisiológica , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A/metabolismo , Diatomeas/efectos de la radiación , Fluorescencia , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Xantófilas/metabolismo
13.
Photosynth Res ; 146(1-3): 143-150, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32067138

RESUMEN

A marine pennate diatom Phaeodactylum tricornutum (Pt) and a marine centric diatom Chaetoceros gracilis (Cg) possess unique light-harvesting complexes, fucoxanthin chlorophyll a/c-binding proteins (FCPs). FCPs have dual functions: light harvesting in the blue to green regions and quenching of excess energy. So far, excitation dynamics including FCPs have been studied by altering continuous light conditions. In the present study, we examined responses of the diatom cells to fluctuating light (FL) conditions. Excitation dynamics in the cells incubated under the FL conditions were analyzed by time-resolved fluorescence measurements followed by global analysis. As responses common to the Pt and Cg cells, quenching behaviors were observed in photosystem (PS) II with time constants of hundreds of picoseconds. The PSII → PSI energy transfer was modified only in the Pt cells, whereas quenching in FCPs was suggested only in the Cg cells, indicating different strategy for the dissipation of excess energy under the FL conditions.


Asunto(s)
Diatomeas/metabolismo , Transferencia de Energía , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila A/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Diatomeas/efectos de la radiación , Fluorescencia
14.
J Biol Chem ; 293(38): 14786-14797, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30076221

RESUMEN

Sulfoquinovosyl-diacylglycerol (SQDG) is one of the four lipids present in the thylakoid membranes. Depletion of SQDG causes different degrees of effects on photosynthetic growth and activities in different organisms. Four SQDG molecules bind to each monomer of photosystem II (PSII), but their role in PSII function has not been characterized in detail, and no PSII structure without SQDG has been reported. We analyzed the activities of PSII from an SQDG-deficient mutant of the cyanobacterium Thermosynechococcus elongatus by various spectroscopic methods, which showed that depletion of SQDG partially impaired the PSII activity by impairing secondary quinone (QB) exchange at the acceptor site. We further solved the crystal structure of the PSII dimer from the SQDG deletion mutant at 2.1 Å resolution and found that all of the four SQDG-binding sites were occupied by other lipids, most likely PG molecules. Replacement of SQDG at a site near the head of QB provides a possible explanation for the QB impairment. The replacement of two SQDGs located at the monomer-monomer interface by other lipids decreased the stability of the PSII dimer, resulting in an increase in the amount of PSII monomer in the mutant. The present results thus suggest that although SQDG binding in all of the PSII-binding sites is necessary to fully maintain the activity and stability of PSII, replacement of SQDG by other lipids can partially compensate for their functions.


Asunto(s)
Diglicéridos/metabolismo , Lípidos de la Membrana/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Synechococcus/metabolismo , Tilacoides/metabolismo , Cristalización , Cristalografía por Rayos X , Diglicéridos/genética , Dimerización , Genes Bacterianos , Luminiscencia , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/química , Conformación Proteica , Espectroscopía Infrarroja por Transformada de Fourier , Synechococcus/genética
15.
Photosynth Res ; 141(3): 355-365, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30993504

RESUMEN

Controlling excitation energy flow is a fundamental ability of photosynthetic organisms to keep a better performance of photosynthesis. Among the organisms, diatoms have unique light-harvesting complexes, fucoxanthin chlorophyll (Chl) a/c-binding proteins. We have recently investigated light-adaptation mechanisms of a marine centric diatom, Chaetoceros gracilis, by spectroscopic techniques. However, it remains unclear how pennate diatoms regulate excitation energy under different growth light conditions. Here, we studied light-adaptation mechanisms in a marine pennate diatom Phaeodactylum tricornutum grown at 30 µmol photons m-2 s-1 and further incubated for 24 h either in the dark, or at 30 or 300 µmol photons m-2 s-1 light intensity, by time-resolved fluorescence (TRF) spectroscopy. The high-light incubated cells showed no detectable oxygen-evolving activity of photosystem II, indicating the occurrence of a severe photodamage. The photodamaged cells showed alterations of steady-state absorption and fluorescence spectra and TRF spectra compared with the dark and low-light adapted cells. In particular, excitation-energy quenching is significantly accelerated in the photodamaged cells as shown by mean lifetime analysis of the Chl fluorescence. These spectral changes by the high-light treatment may result from arrangements of pigment-protein complexes to maintain the photosynthetic performance under excess light illumination. These growth-light dependent spectral properties in P. tricornutum are largely different from those in C. gracilis, thus providing insights into the different light-adaptation mechanisms between the pennate and centric diatoms.


Asunto(s)
Diatomeas/fisiología , Diatomeas/efectos de la radiación , Luz , Clorofila/metabolismo , Oxígeno/metabolismo , Espectrometría de Fluorescencia , Factores de Tiempo
16.
Photosynth Res ; 140(2): 141-149, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30187302

RESUMEN

Diatoms are dominant phytoplankton in aquatic environments and have unique light-harvesting apparatus, fucoxanthin chlorophyll a/c-binding protein (FCP). Diatom photosystem I (PSI) interacts with specific FCPs (FCPI); however, it remains unclear how PSI cores receive excitation energy from FCPI. To analyze the energy transfer dynamics, it is necessary to isolate both PSI cores and PSI-FCPI complexes. In this study, we prepared three PSI complexes, which are PSI-FCPI membrane fragments, detergent-solubilized PSI-FCPI supercomplexes and PSI core-like complexes, from the marine centric diatom, Chaetoceros gracilis, and examined their biochemical properties. Both the PSI-FCPI membrane fragments and supercomplexes showed similar subunit compositions including FCPI, whereas the PSI complexes were devoid of most FCPI subunits. The purity and homogeneity of the two detergent-solubilized PSI preparations were verified by clear-native PAGE and electron microscopy. The difference of pigment contents among the three PSI samples was shown by absorption spectra at 77 K. The intensity in the whole spectrum of PSI-FCPI membranes was much higher than those of the other two complexes, while the spectral shape of PSI complexes was similar to that of cyanobacterial PSI core complexes. 77-K fluorescence spectra of the three PSI preparations exhibited different spectral shapes, especially peak positions and band widths. Based on these observations, we discuss the merits of three PSI preparations for evaluating excitation energy dynamics in diatom PSI-FCPI complexes.


Asunto(s)
Proteínas de Unión a Clorofila/metabolismo , Diatomeas/metabolismo , Transferencia de Energía , Complejo de Proteína del Fotosistema I/metabolismo , Pigmentos Biológicos/metabolismo , Xantófilas/metabolismo , Clorofila A/metabolismo , Fluorescencia , Electroforesis en Gel de Poliacrilamida Nativa
18.
Proc Natl Acad Sci U S A ; 113(3): 620-5, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26715751

RESUMEN

Photosystem II (PSII) extracts electrons from water at a Mn4CaO5 cluster using light energy and then transfers them to two plastoquinones, the primary quinone electron acceptor QA and the secondary quinone electron acceptor QB. This forward electron transfer is an essential process in light energy conversion. Meanwhile, backward electron transfer is also significant in photoprotection of PSII proteins. Modulation of the redox potential (Em) gap of QA and QB mainly regulates the forward and backward electron transfers in PSII. However, the full scheme of electron transfer regulation remains unresolved due to the unknown Em value of QB. Here, for the first time (to our knowledge), the Em value of QB reduction was measured directly using spectroelectrochemistry in combination with light-induced Fourier transform infrared difference spectroscopy. The Em(QB (-)/QB) was determined to be approximately +90 mV and was virtually unaffected by depletion of the Mn4CaO5 cluster. This insensitivity of Em(QB (-)/QB), in combination with the known large upshift of Em(QA (-)/QA), explains the mechanism of PSII photoprotection with an impaired Mn4CaO5 cluster, in which a large decrease in the Em gap between QA and QB promotes rapid charge recombination via QA (-).


Asunto(s)
Electrones , Complejo de Proteína del Fotosistema II/metabolismo , Quinonas/metabolismo , Simulación por Computador , Electrodos , Transporte de Electrón , Manganeso/metabolismo , Modelos Moleculares , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
19.
Biochim Biophys Acta Bioenerg ; 1859(2): 129-136, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29174010

RESUMEN

Light-induced Fourier transformed infrared (FTIR) difference spectroscopy is a powerful method to study the structures and reactions of redox cofactors involved in the photosynthetic electron transport chain. So far, most of the FTIR studies of the reactions of oxygenic photosynthesis have been performed using isolated photosystem I (PSI) and photosystem II (PSII) preparations, which, however, could be modified during isolation procedures. In this study, we developed a methodology to evaluate the photosynthetic activities of thylakoids using FTIR spectroscopy. FTIR difference spectra upon successive flashes using thylakoids from spinach exhibited signals typical of the S-state cycle at the Mn4CaO5 cluster and QB reactions in PSII with period-four and -two oscillations, respectively. Similar measurement in the presence of an artificial quinone as an exogenous electron acceptor showed features specific to the S-state cycle. Simulations of the oscillation patterns provided the quantum efficiencies of the S-state cycle and electron transfer in PSII. Moreover, FTIR measurement under continuous illumination on thylakoids in the presence of DCMU showed signals due to QA reduction and P700 oxidation simultaneously. From the relative amplitudes of marker bands of QA- and P700+, the molar ratio of photoactive PSII and PSI centers in thylakoids was estimated. FTIR analyses of the photo-reactions in thylakoids, which are more intact than isolated photosystems, will be useful in investigations of the photosynthetic mechanism especially by genetic modification of photosystem proteins.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema II/química , Spinacia oleracea/enzimología , Tilacoides/enzimología , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Spinacia oleracea/genética , Tilacoides/genética
20.
Biochim Biophys Acta Bioenerg ; 1859(7): 524-530, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29660309

RESUMEN

Maintenance of energy balance under changeable light conditions is an essential function of photosynthetic organisms to achieve efficient photochemical reactions. Among the photosynthetic organisms, diatoms possess light-harvesting fucoxanthin chlorophyll (Chl) a/c-binding protein (FCP) as peripheral antennas. However, how diatoms regulate excitation-energy distribution between FCP and the two photosystem cores during light adaptation is poorly understood. In this study, we examined spectroscopic properties of a marine diatom Chaetoceros gracilis adapted in the dark and at photosynthetic photon flux density at 30 and 300 µmol photons m-2 s-1. Absorption spectra at 77 K showed significant changes in the Soret region, and 77-K steady-state fluorescence spectra showed significant differences in the spectral shape and relative fluorescence intensity originating from both PSII and PSI, among the cells grown under different light conditions. These results suggest alterations of pigment composition and their interactions under the different light conditions. These alterations affected the excitation-energy dynamics monitored by picosecond time-resolved fluorescence analyses at 77 K significantly. The contributions of Chls having lower energy levels than the reaction center Chls in the two photosystems to the energy dynamics were clearly identified in the three cells but with presumably different roles. These findings provide insights into the regulatory mechanism of excitation-energy balance in diatoms under various light conditions.


Asunto(s)
Clorofila/análisis , Diatomeas/metabolismo , Pigmentos Biológicos/análisis , Espectrometría de Fluorescencia/métodos , Clorofila A , Proteínas de Unión a Clorofila/análisis , Luz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA