Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell Biol Toxicol ; 39(4): 1181-1201, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35622184

RESUMEN

Among epithelial ovarian cancers, ovarian clear cell carcinoma (OCCC) remains markedly resistant to platinum-based chemotherapy, leading to poor clinical outcomes. In response to xenobiotic insults, caveolar platforms play crucial roles in modulating stress signaling responses in cancer cells. It has been hypothesized that caveolin-1 (Cav-1), a main component of the lipid raft, may regulate the response to platinum-based treatment in OCCC. The clinical transcriptomic evaluation demonstrated that high Cav-1 expression was positively associated with a favorable prognosis in patients with ovarian cancer. Cav-1 overexpression enhanced sensitivity to cisplatin (CDDP) treatment, whereas Cav-1 deficiency promoted chemoresistance in OCCC cells. Mechanistically, although Cav-1 counteracted angiotensin-converting enzyme 2 (ACE2) expression, ACE2 positively facilitated resistance to CDDP in OCCC cells. Furthermore, ACE2 restricted aryl hydrocarbon receptor expression and subsequent transcription of drug-metabolizing enzymes. Of note, ACE2 positively regulated the expression of the platinum-clearing enzyme CYP3A4. These findings suggest that the Cav-1-ACE2 axis modulates xenobiotic metabolism-linked chemoresistance in OCCC, predicting potential roles for the stress sentinel networks in oncogenic processes.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Femenino , Humanos , Caveolina 1/genética , Caveolina 1/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/uso terapéutico , Resistencia a Antineoplásicos , Xenobióticos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Cisplatino/farmacología , Carcinoma/patología
2.
Ecotoxicol Environ Saf ; 230: 113130, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34968797

RESUMEN

Stress-responsive microRNAs (miRNAs) contribute to the regulation of cellular homeostasis or pathological processes, including carcinogenesis, by reprogramming target gene expression following human exposure to environmental or dietary xenobiotics. Herein, we predicted the targets of carcinogenic mycotoxin-responsive miRNAs and analyzed their association with disease and functionality. miRNA target-derived prediction indicated potent associations of oncogenic mycotoxin exposure with metabolism- or hormone-related diseases, including sex hormone-linked cancers. Mechanistically, the signaling network evaluation suggested androgen receptor (AR)-linked signaling as a common pivotal cluster associated with metabolism- or hormone-related tumorigenesis in response to aflatoxin B1 and ochratoxin A co-exposure. Particularly, high levels of AR and AR-linked genes for the retinol and xenobiotic metabolic enzymes were positively associated with attenuated disease biomarkers and good prognosis in patients with liver or kidney cancers. Moreover, AR-linked signaling was protective against OTA-induced genetic insults in human hepatocytes whereas it was positively involved in AFB1-induced genotoxic actions. Collectively, miRNA target network-based predictions provide novel clinical insights into the progression or intervention against malignant adverse outcomes of human exposure to environmental oncogenic insults.

3.
Molecules ; 25(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455624

RESUMEN

Vitis coignetiae Pulliat (Meoru in Korea) has been used in Korean folk medicine for the treatment of inflammatory diseases and cancers. Evidence suggests that NF-κB activation is mainly involved in cancer cell proliferation, invasion, angiogenesis, and metastasis. TNF-α also enhances the inflammatory process in tumor development. Recently, flavonoids from plants have been reported to have inhibitory effects on NF-κB activities. We investigated the effects of anthocyanins extracted from the fruits of Vitis coignetiae Pulliat (AIM, anthocyanins isolated from Meoru (AIM)) on TNF-α-induced NF-κB activities in MCF-7 human breast cancer cells and the molecules involved in AIM-induced anti-cancer effects, especially on cancer metastasis. We performed cell viability assay, gelatin zymography, invasion assay, and western blot analysis to unravel the anti-NF-κB activity of AIMs on MCF-7 cells. AIM suppressed the TNF-α effects on the NF-κB-regulated proteins involved in cancer cell proliferation (COX-2, C-myc), invasion, and angiogenesis (MMP-2, MMP9, ICAM-1, and VEGF). AIM also increased the expression of E-cadherin, which is one of the hallmarks of the epithelial-mesenchymal transition (EMT) process. In conclusion, this study demonstrates that the anthocyanins isolated from the fruits of Vitis coignetiae Pulliat acts as an inhibitor of TNF-α induced NF-κB activation, and subsequent downstream molecules involved in cancer proliferation, invasion, adhesion, angiogenesis, and thus have anti-metastatic activities in MCF-7 breast cancer cells.


Asunto(s)
Antocianinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/genética , Vitis/química , Antocianinas/química , Antocianinas/aislamiento & purificación , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Frutas/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , FN-kappa B/genética , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteínas de Neoplasias/genética
4.
Phytother Res ; 33(5): 1384-1393, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30887612

RESUMEN

Evidence suggests that auranofin (AF) exhibits anticancer activity by inhibiting thioredoxin reductase (TrxR). Here, in this study, we have investigated the synergistic effects of AF and morin and their mechanism for the anticancer effects focusing on apoptosis in Hep3B human hepatocellular carcinoma cells. We assessed the anticancer activities by annexin V/PI double staining, caspase, and TrxR activity assay. Morin enhances the inhibitory effects on TrxR activity of AF as well as reducing cell viability. Annexin V/PI double staining revealed that morin/AF cotreatment induced apoptotic cell death. Morin enhances AF-induced mitochondrial membrane potential (ΔΨm) loss and cytochrome c release. Further, morin/AF cotreatment upregulated death receptor DR4/DR5, modulated Bcl-2 family members (upregulation of Bax and downregulation of Bcl-2), and activated caspase-3, -8, and -9. Morin also enhances AF-induced reactive oxygen species (ROS) generation. The anticancer effects results from caspase-dependent apoptosis, which was triggered via extrinsic pathway by upregulating TRAIL receptors (DR4/DR5) and enhanced via intrinsic pathway by modulating Bcl-2 and inhibitor of apoptosis protein family members. These are related to ROS generation. In conclusion, this study provides evidence that morin can enhance the anticancer activity of AF in Hep3B human hepatocellular carcinoma cells, indicating that its combination could be an alternative treatment strategy for the hepatocellular carcinoma.


Asunto(s)
Auranofina/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Flavonoides/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Neoplasias Hepáticas/patología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
5.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035653

RESUMEN

Endogenous cannabinoids (ECs) are lipid-signaling molecules that specifically bind to cannabinoid receptor types 1 and 2 (CB1R and CB2R) and are highly expressed in central and many peripheral tissues under pathological conditions. Activation of hepatic CB1R is associated with obesity, insulin resistance, and impaired metabolic function, owing to increased energy intake and storage, impaired glucose and lipid metabolism, and enhanced oxidative stress and inflammatory responses. Additionally, blocking peripheral CB1R improves insulin sensitivity and glucose metabolism and also reduces hepatic steatosis and body weight in obese mice. Thus, targeting EC receptors, especially CB1R, may provide a potential therapeutic strategy against obesity and insulin resistance. There are many CB1R antagonists, including inverse agonists and natural compounds that target CB1R and can reduce body weight, adiposity, and hepatic steatosis, and those that improve insulin sensitivity and reverse leptin resistance. Recently, the use of CB1R antagonists was suspended due to adverse central effects, and this caused a major setback in the development of CB1R antagonists. Recent studies, however, have focused on development of antagonists lacking adverse effects. In this review, we detail the important role of CB1R in hepatic insulin resistance and the possible underlying mechanisms, and the therapeutic potential of CB1R targeting is also discussed.


Asunto(s)
Resistencia a la Insulina , Receptor Cannabinoide CB1/metabolismo , Animales , Susceptibilidad a Enfermedades , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Metabolismo de los Lípidos , Terapia Molecular Dirigida , Músculo Esquelético/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Especificidad de Órganos , Transducción de Señal
6.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31906014

RESUMEN

Cryptotanshinone (CT), a diterpene that is isolated from Salvia miltiorrhiza Bunge, exhibits anti-cancer, anti-oxidative, anti-fibrosis, and anti-inflammatory properties. Here, we examined whether CT administration possess a hepatoprotective effect on chronic ethanol-induced liver injury. We established a chronic alcohol feeding mouse model while using C57BL/6 mice, and examined the liver sections with hematoxylin-eosin (H&E) and Oil Red O (ORO) staining. Further, we analyzed the lipogenesis, fatty acid oxidation, oxidative stress, and inflammation genes by using quantitative polymerase chain reaction (qPCR) and immunoblotting in in vivo, and in vitro while using HepG2 and AML-12 cells. CT treatment significantly ameliorated ethanol-promoted hepatic steatosis, which was consistent with the decreased hepatic triglyceride levels. Interestingly, CT activated the phosphorylation of AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and nuclear factor E2-related factor 2 (Nrf2) proteins. Importantly, compound C (AMPK inhibitor) significantly blocked the CT-mediated reduction in TG accumulation, but not Ex52735 (SIRT1 inhibitor), which suggested that CT countering ethanol-promoted hepatic steatosis is mediated by AMPK activation. Furthermore, CT significantly inhibited cytochrome P450 2E1 (CYP2E1) and enhanced both the expression of antioxidant genes and hepatic glutathione levels. Finally, CT inhibited the ethanol-induced inflammation in ethanol-fed mice and HepG2 cells. Overall, CT exhibits a hepatoprotective effect against ethanol-induced liver injury by the inhibition of lipogenesis, oxidative stress, and inflammation through the activation of AMPK/SIRT1 and Nrf2 and the inhibition of CYP2E1. Therefore, CT could be an effective therapeutic agent for treating ethanol-induced liver injury.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Etanol/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Fenantrenos/farmacología , Salvia miltiorrhiza/química , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Animales , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Hígado Graso , Glutatión/metabolismo , Células Hep G2 , Humanos , Inflamación/genética , Metabolismo de los Lípidos/genética , Lipogénesis/genética , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Fenantrenos/uso terapéutico
7.
Phytother Res ; 32(3): 504-513, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29193390

RESUMEN

Decoctions obtained from the dried flowers of Lonicera japonica Thunb. (Indongcho) have been utilized in folk remedies against inflammatory diseases. Recently, many agents that have used for inflammatory diseases are showing anticancer effects. Here, we have isolated polyphenols extracted from lyophilized Lonicera japonica Thunb (PELJ) and investigated the anticancer effects of PELJ on U937 cells. Here, we demonstrated that PELJ induced apoptosis by upregulation of DR4 and Fas, and further it is augmented by suppression of XIAP. In addition, The PELJ-induced apoptosis is at least in part by blocking PI3K/Akt pathway. These findings suggest that PELJ may provide evidence of anticancer activities on U937 cells. Further study for detailed mechanism and the effects on animal models is warranted to determine whether PELJ provide more conclusive evidence that PELJ which may provide a beneficial effect for treating cancer.


Asunto(s)
Caspasas/metabolismo , Leucemia/metabolismo , Lonicera/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Muerte Celular/metabolismo , Apoptosis , Humanos , Células U937
8.
Int J Mol Sci ; 19(4)2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29570673

RESUMEN

Activation of the hepatic cannabinoid type 1 receptor (CB1R) induces insulin resistance and gluconeogenesis via endoplasmic reticulum (ER) stress, thereby contributing to hyperglycemia. Gomisin N (GN) is a phytochemical derived from Schisandra chinensis. In the current study, we investigated the inhibitory effects of GN on hepatic CB1R-mediated insulin resistance and gluconeogenesis in 2-arachidonoylglycerol (AG; an agonist of CB1R)-treated HepG2 cells and in high-fat diet (HFD)-induced obese mice. Treatment with 2-AG induced the expression of ER stress markers, serine/threonine phosphatase PHLPP1, Lipin1, and ceramide synthesis genes, but reduced the expression of ceramide degradation genes in HepG2 cells. However, GN reversed 2-AG-mediated effects and improved the 2-AG-mediated impairment of insulin signaling. Furthermore, GN inhibited 2-AG-induced intracellular triglyceride accumulation and glucose production in HepG2 cells by downregulation of lipogenesis and gluconeogenesis genes, respectively. In vivo, GN administration to HFD obese mice reduced the HFD-induced increase in fasting blood glucose and insulin levels, which was accompanied with downregulation of HFD-induced expression of CB1R, ER stress markers, ceramide synthesis gene, and gluconeogenesis genes in the livers of HFD obese mice. These findings demonstrate that GN protects against hepatic CB1-mediated impairment of insulin signaling and gluconeogenesis, thereby contributing to the amelioration of hyperglycemia.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Lignanos/farmacología , Compuestos Policíclicos/farmacología , Receptores de Cannabinoides/metabolismo , Ácidos Araquidónicos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Ciclooctanos/farmacología , Endocannabinoides/farmacología , Glicéridos/farmacología , Células Hep G2 , Humanos , Resistencia a la Insulina/fisiología , Lipogénesis/efectos de los fármacos
9.
Int J Mol Sci ; 19(9)2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30200508

RESUMEN

Gomisin N (GN), a lignan derived from Schisandra chinensis, has been shown to possess antioxidant, anti-inflammatory, and anticancer properties. In the present study, we investigated the protective effect of GN against ethanol-induced liver injury using in vivo and in vitro experiments. Histopathological examination revealed that GN administration to chronic-binge ethanol exposure mice significantly reduced ethanol-induced hepatic steatosis through reducing lipogenesis gene expression and increasing fatty acid oxidation gene expression, and prevented liver injury by lowering the serum levels of aspartate transaminase and alanine transaminase. Further, it significantly inhibited cytochrome P450 2E1 (CYP2E1) gene expression and enzyme activity, and enhanced antioxidant genes and glutathione level in hepatic tissues, which led to decreased hepatic malondialdehyde levels. It also lowered inflammation gene expression. Finally, GN administration promoted hepatic sirtuin1 (SIRT1)-AMP-activated protein kinase (AMPK) signaling in ethanol-fed mice. Consistent with in vivo data, treatment with GN decreased lipogenesis gene expression and increased fatty acid oxidation gene expression in ethanol-treated HepG2 cells, thereby preventing ethanol-induced triglyceride accumulation. Furthermore, it inhibited reactive oxygen species generation by downregulating CYP2E1 and upregulating antioxidant gene expression, and suppressed inflammatory gene expression. Moreover, GN prevented ethanol-mediated reduction in SIRT1 and phosphorylated AMPK. These findings indicate that GN has therapeutic potential against alcoholic liver disease through inhibiting hepatic steatosis, oxidative stress and inflammation.


Asunto(s)
Hígado Graso Alcohólico/metabolismo , Lignanos/farmacología , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Compuestos Policíclicos/farmacología , Alanina Transaminasa/sangre , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Aspartato Aminotransferasas/sangre , Ciclooctanos/administración & dosificación , Ciclooctanos/farmacología , Etanol/toxicidad , Hígado Graso Alcohólico/tratamiento farmacológico , Células Hep G2 , Humanos , Lignanos/administración & dosificación , Hígado/lesiones , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Compuestos Policíclicos/administración & dosificación
10.
Phytother Res ; 30(11): 1824-1832, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27534446

RESUMEN

Decoctions of the dried flowers of Lonicera japonica Thunb. (Indongcho) have been utilized in folk remedies against various inflammatory diseases, and it is reported neuroprotective effects. The cytokines release from microglia is closely linked to various chronic neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. It is still unknown whether the neuroprotective effects are associated with the antiinflammatory effects. Here, we determined whether polyphenols extracted from lyophilized Lonicera japonica Thunb. (PELJ) would inhibit inflammatory cytokines and mediators. We stimulated microglia with lipopolysaccharide (LPS) to produce inflammatory cytokines, and then assessed the effects of PELJ on these cytokines. PELJ significantly inhibited LPS-induced interleukin-1ß and tumor necrosis factor-α expressions and LPS-induced nitric oxide (NO) and prostaglandin E2 expressions by down-regulating inducible enzyme NO synthase and cyclooxygenase-2 at the protein and mRNA levels. All the suppression of these mediators did not cause any significant cytotoxicity. PELJ also inhibited the nuclear translocation of nuclear factor-kappa B and phosphorylated Akt. These findings suggest that PELJ may offer substantial therapeutic potential for treating inflammatory and neurodegenerative diseases by inhibiting pro-inflammatory cytokines through inhibiting phosphoinositol 3-kinase /Akt/nuclear factor-kappa B signaling pathway. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Antiinflamatorios/metabolismo , Flavonoides/química , Flores/química , Lonicera/química , Microglía/citología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antiinflamatorios/farmacología , Transducción de Señal
11.
Biosci Biotechnol Biochem ; 79(1): 147-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25248662

RESUMEN

Grifola frondosa (GF), distributed widely in far east Asia including Korea, is popularly used as traditional medicines and health supplementary foods, especially for enhancing the immune functions of the body. To extend the application of GF polysaccharides (GFP) for atopic dermatitis (AD), we investigated the effects of GFP on the 2,4-dinitrochlorobenzene-induced AD-like skin lesion in NC/Nga mice. GFP treatment significantly reduced the dorsa skin dermatitis score and combination treatment with GFP, and dexamethasone has a synergistic effect in AD-like skin lesion by reduced Serum IgE, mast cells infiltration, and cytokines expression. These results indicate that GFP suppressed the AD-like skin lesions by controlling the Th-1/Th-2-type cytokines in NC/Nga mice. These findings strongly suggest that GFP can be useful for AD patients as a novel therapeutic agent and might be used for corticosteroids replacement or supplement agent.


Asunto(s)
Antiinflamatorios/farmacología , Dermatitis Atópica/tratamiento farmacológico , Grifola/química , Polisacáridos/farmacología , Piel/efectos de los fármacos , Animales , Antiinflamatorios/aislamiento & purificación , Movimiento Celular/efectos de los fármacos , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Dexametasona/farmacología , Dinitroclorobenceno , Sinergismo Farmacológico , Femenino , Inmunoglobulina E/sangre , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Mastocitos/patología , Ratones , Extractos Vegetales/química , Polisacáridos/aislamiento & purificación , Piel/inmunología , Piel/patología , Solventes , Balance Th1 - Th2/efectos de los fármacos , Agua
12.
Phytother Res ; 29(10): 1516-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26148472

RESUMEN

Pachymic acid (PA) is a lanostane-type triterpenoid derived from Poria cocos mushroom that possess various biological effects such as anti-cancer, antiinflammatory and anti-metastasis effects. In this study, we investigated the anti-cancer effects of PA in EJ bladder cancer cells. The results showed that PA significantly inhibited proliferation of EJ cells in a dose-dependent manner. PA induced accumulation of sub-G1 DNA content (apoptotic cell population), apoptotic bodies and chromatin condensation and DNA fragmentation in EJ cells in a dose-dependent manner. PA also induces activation of caspase-3, -8 and -9, and subsequent cleavage of poly (ADP-ribose) polymerase, and significantly suppressed the inhibitor of apoptosis protein family proteins in a dose-dependent manner. Furthermore, PA activates Bid and induced the loss of mitochondrial membrane potential (ΔΨm ) with up-regulated pro-apoptotic proteins (Bax and Bad), down-regulated anti-apoptotic proteins (Bcl-2 and Bcl-xL) and cytochrome c release. In turn, PA increased the generation of reactive oxygen species (ROS); also, the ROS production was blocked by N-acetyl-L-cysteine. The expressions of TNF-related apoptosis inducing ligand and death receptor 5 were up-regulated by PA in a dose-dependent manner, suggesting extrinsic pathway also involved in PA-induced apoptosis. This study provides evidence that PA might be useful in the treatment of human bladder cancer.


Asunto(s)
Especies Reactivas de Oxígeno , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Triterpenos/farmacología , Proteína X Asociada a bcl-2 , Acetilcisteína/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Caspasas/metabolismo , Citocromos c/metabolismo , Fragmentación del ADN , Regulación hacia Abajo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fosfolipasas A/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF , Regulación hacia Arriba , Neoplasias de la Vejiga Urinaria , Proteína X Asociada a bcl-2/metabolismo
13.
Int J Mol Sci ; 16(9): 22676-91, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26393583

RESUMEN

Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Proteína Ligando Fas/metabolismo , Flavonoides/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Estómago/efectos de los fármacos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Antineoplásicos Fitogénicos/química , Caspasas/metabolismo , Línea Celular Tumoral , Citrus/química , Fragmentación del ADN/efectos de los fármacos , Proteína Ligando Fas/genética , Flavonoides/química , Mucosa Gástrica/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Estómago/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Regulación hacia Arriba/efectos de los fármacos
14.
BMC Complement Altern Med ; 14: 379, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25287937

RESUMEN

BACKGROUND: Scutellaria baicalensis Georgi is a commonly used medicinal herb in several Asian countries like Korea, China and Japan for thousands of years. It has been reported to have various medicinal properties such as anti-microbial, anti-inflammatory and anti-cancer effects. However, the anti-inflammatory mechanism of S. baicalensis G at proteome level has not yet been reported. Hence, we performed a proteome analysis to study differentially expressed proteins and its anti-inflammatory role in lipopolysaccharide (LPS) stimulated L6 skeletal muscle cells response to flavonoids isolated from S. baicalensis G. METHODS: For that, 150 µg of proteins from the L6 cells of the control (Vehicle only), LPS treated and flavonoid treated groups were separated using 18 cm, pH 4-7 IPG strips in the first dimension and resolved by 12% linear gradient SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The silver stained gels were analyzed by using progenesis SameSpots software and twenty six differentially expressed protein spots (≥ 2 fold, p < 0.05) were selected for matrix assisted laser desorption ionization- time of flight mass spectroscopy/mass spectrometry (MALDI-TOF/MS) analysis. Also, the expression of COX-2, iNOS and Annexin A2 proteins were analyzed by western blot. RESULTS: Totally, 12 differentially expressed proteins were successfully identified by MALDI-TOF/MS and database searching, that's involved in inflammatory responses such vimentin, T-box transcription factor TBX3, annexin A1, annexin A2 and annexin A5. In addition, flavonoids inhibited the expression of COX-2, iNOS and Annexin A2 proteins in LPS-stimulated L6 skeletal muscle cells. CONCLUSIONS: The findings revealed that the flavonoids from S. baicalensis G. directly protect the LPS stimulated inflammation process in L6 cells and, would be helpful to study further the muscle cell inflammatory mechanism. This is the first proteome study provide the anti-inflammatory mechanism of flavonoids from S. baicalensis G. in LPS stimulated L6 skeletal muscle cells.


Asunto(s)
Flavonoides/farmacología , Extractos Vegetales/farmacología , Proteoma/efectos de los fármacos , Scutellaria baicalensis/química , Animales , Antiinflamatorios , Línea Celular , Supervivencia Celular/efectos de los fármacos , Electroforesis en Gel Bidimensional , Flavonoides/química , Flavonoides/toxicidad , Lipopolisacáridos/toxicidad , Músculo Esquelético/citología , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Proteínas/análisis , Proteínas/química , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Int J Mol Sci ; 16(1): 645-59, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25561222

RESUMEN

Evidence suggests that phytochemicals can safely modulate cancer cell biology and induce apoptosis. Here, we investigated the anti-cancer activity of morin, a flavone originally isolated from members of the Moraceae family in human leukemic cells, focusing on apoptosis. An anti-cancer effect of morin was screened with several human leukemic cell lines. U937 cells were most sensitive to morin, where it induced caspase-dependent apoptosis in a dose-dependent manner. It also induced loss of MMP (ΔΨm) along with cytochrome c release, down-regulated Bcl-2 protein, and up-regulated BAX proteins. The apoptotic activity of morin was significantly attenuated by Bcl-2 augmentation. In conclusion, morin induced caspase-dependent apoptosis through an intrinsic pathway by upregulating BAD proteins. In addition, Bcl-2 protein expression is also important in morin-induced apoptosis of U937 cells. This study provides evidence that morin might have anticancer properties in human leukemic cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Flavonoides/toxicidad , Moraceae/química , Proteína Letal Asociada a bcl/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Flavonoides/química , Células HL-60 , Humanos , Células K562 , Leucemia/metabolismo , Leucemia/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Moraceae/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células U937 , Regulación hacia Arriba/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
16.
BMC Biochem ; 14: 24, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24067024

RESUMEN

BACKGROUND: Vitamin C (ascorbic acid) is an essential nutrient of most living tissues that readily acts as a strong reducing agent, which is abundant in fruits and vegetables. Although, it inhibits cell growth in many human cancer cells in vitro, treatment in cancer is still controversial. Hence, the purpose of this study was to investigate the molecular mechanism of the inhibitory effect of vitamin C on AGS cell growth, and protein profiles in AGS cells after exposure to vitamin C treatment, by using proteomic tools. RESULTS: Vitamin C showed a cytotoxic effect on AGS cells (IC50 300 µg/mL) and, 20 differentially expressed proteins (spot intensities which show ≥2 fold change and statistically significant, p<0.05 between the control and vitamin-C treated group) were successfully identified by assisted laser desorption/ ionization-time of flight/mass spectrometry (MALDI-TOF/MS). Of the 20 proteins, six were up-regulated and fourteen were down-regulated. Specifically, 14-3-3σ, 14-3-3ϵ, 14-3-3δ, tropomyosin alpha-3 chain and tropomyosin alpha-4 chain were down-regulated and peroxiredoxin-4 and thioredoxin domain-containing proteins 5 were up-regulated. The identified proteins are mainly involved in cell mobility, antioxidant and detoxification, signal transduction and protein metabolism. Further, the expressions of 14-3-3 isoforms were verified with immuno-blotting analysis. CONCLUSIONS: Our proteome results suggest that the apoptosis related proteins were involved in promoting and regulating cell death of AGS cells, and might be helpful to understand the molecular mechanism of vitamin C on AGS cell growth inhibition.


Asunto(s)
Ácido Ascórbico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteoma/análisis , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Proteínas 14-3-3/metabolismo , Antioxidantes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Electroforesis en Gel Bidimensional , Humanos , Peroxirredoxinas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Isoformas de Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Tropomiosina/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-22611435

RESUMEN

Lonicera japonica THUNB., which abundantly contains polyphenols, has been used as a traditional medicine for thousands of years in East Asian countries because of the anti-inflammation properties. This study aimed to investigate the anti-inflammatory mechanism of polyphenol components isolated from Korea L. japonica T. by nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) pathway. Polyphenols significantly decreased lipopolysaccharide- (LPS-) induced mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2, as well as mRNA expression of tumor necrosis factor-alpha, interleukin- (IL-) 1ß, and IL-6. Moreover, polyphenols inhibited nuclear translocation of NF-κB p65, phosphorylation/degradation of the inhibitor of κB, and phosphorylation of p38 MAPK, whereas the extracellular signal-regulated kinase and Janus N-terminal kinase were not affected. These results indicate that polyphenol components isolated from Korea L. japonica T. should have anti-inflammatory effect on LPS-stimulated RAW 264.7 cells through the decrease of proinflammatory mediators expression by suppressing NF-κB and p38 MAPK activity.

18.
Artículo en Inglés | MEDLINE | ID: mdl-22194772

RESUMEN

Aim of the Study. Citrus species is used in traditional medicine as medicinal herb in several Asian countries including Korea. Flavonioids became known as various properties, such as anti-oxidants, anti-inflammation and anti-cancer, and so forth. The present study, the anti-cancer effect of flavonioids isolated from Citrus aurantium L. in human gastric cancer AGS cells has been investigated. Materials and Methods. The anti-proliferative activity was assayed using MTT assay. Cell cycle analysis was done using flow cytometry and apoptosis detection was done using by hoechst fluorescent staining and Annexin V-propidium iodide double staining. Western blot was used to detect the expression of protein related with cell cycle and apoptosis. Results. Flavonoids isolated from Citrus aurantium L. have the effect of anti proliferation on AGS cells with IC50 value of 99 µg/mL. Flavonoids inhibited cell cycle progression in the G2/M phase and decrease expression level of cyclin B1, cdc 2, cdc 25c. Flavonoids induced apoptosis through activate caspase and inactivate PARP. Conclusions. Flavonoids isolated from Citrus aurantium L. induced G2/M phase arrest through the modulation of cell cycle related proteins and apoptosis through activation caspase. These finding suggest flavonoids isolated from Citrus aurantium L. were useful agent for the chemoprevention of gastric cancer.

19.
Phytother Res ; 26(12): 1904-12, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22431150

RESUMEN

Citrus fruits (Citrus aurantium L.) have long been used as a traditional herbal medicine. The benefits of the flavonoids found in Citrus aurantium L. include anti-inflammation, anti-cancer, anti-viral and anti-bacterial activities, and enhancement of the immune response. The study investigated the effect of the flavonoids isolated from Citrus aurantium L. native to Korea on the production of pro-inflammatory mediators by blocking signal transduction mediated by nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-induced L6 skeletal muscle cells. The flavonoids decreased the production of inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 and tumor necrosis factor-alpha by suppressing NF-κB and MAPKs signal pathways in LPS-induced L6 skeletal muscle cells. These findings suggest that the flavonoids isolated from Korea Citrus aurantium L. might have anti-inflammatory effects that regulate the expression of inflammatory mediators in L6 skeletal muscle cells.


Asunto(s)
Citrus/química , Flavonoides/farmacología , Mediadores de Inflamación/metabolismo , Células Musculares/efectos de los fármacos , Antiinflamatorios/farmacología , Línea Celular , Ciclooxigenasa 2/metabolismo , Humanos , Interleucina-6/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células Musculares/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
Biochem Pharmacol ; 206: 115303, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36283446

RESUMEN

Upon exposure to internal or external stressors, ribosomes stand sentinel via modulation of ribosome assembly and protein translation. Ribosome-dependent cellular dysfunctions have been associated with pathophysiological processes during inflammation and tumorigenesis. In the present study, ribosome biogenesis was assessed to determine its effects on tumor chemokines, potentially contributing to cancer cell malignant features. In particular, ribosome biogenesis inhibition by antibiotic actinomycin D (ActD) enhanced the expression of chemokines in intestinal cancer cells under endoplasmic reticulum stress that governs multiple pro-tumoral reprogramming. Mechanistically, ribosome biogenesis inhibition superinduced proinflammatory chemokines via transcriptional and post-transcriptional regulation. Moreover, ribosomal stress-responsive p53 and its target macrophage inhibitory cytokine 1 (MIC-1) mediated chemokine superinduction by activating TGF-ß-activated kinase 1 (TAK-1) and nuclear factor-kappa B (NF-κB) in intestinal cancer cells. Cancer cell-based regulation of chemokine induction via MIC-1 signaling was verified using clinical transcriptome datasets. Clinical tumor tissue-derived MIC-1 was a positive regulator of chemokines and genes involved in the ribosome biogenesis pathway, supporting the in vitro assessments. Moreover, MIC-1-correlated chemokine expressions predicted poor prognoses in patients with colorectal cancer. Ribosome-based chemokine regulation via MIC-1 signaling would provide novel insights into translational interventions against malignant inflammatory insults.


Asunto(s)
Antibacterianos , Neoplasias , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Ribosomas/metabolismo , FN-kappa B/metabolismo , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA