Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Eur J Neurosci ; 59(12): 3422-3444, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679044

RESUMEN

Drug dependence is characterized by a switch in motivation wherein a positively reinforcing substance can become negatively reinforcing. Put differently, drug use can transform from a form of pleasure-seeking to a form of relief-seeking. Ventral tegmental area (VTA) GABA neurons form an anatomical point of divergence between two double dissociable pathways that have been shown to be functionally implicated and necessary for these respective motivations to seek drugs. The tegmental pedunculopontine nucleus (TPP) is necessary for opiate conditioned place preferences (CPP) in previously drug-naïve rats and mice, whereas dopaminergic (DA) transmission in the nucleus accumbens (NAc) is necessary for opiate CPP in opiate-dependent and withdrawn (ODW) rats and mice. Here, we show that this switch in functional anatomy is contingent upon the gap junction-forming protein, connexin-36 (Cx36), in VTA GABA neurons. Intra-VTA infusions of the Cx36 blocker, mefloquine, in ODW rats resulted in a reversion to a drug-naïve-like state wherein the TPP was necessary for opiate CPP and where opiate withdrawal aversions were lost. Consistent with these data, conditional knockout mice lacking Cx36 in GABA neurons (GAD65-Cre;Cx36 fl(CFP)/fl(CFP)) exhibited a perpetual drug-naïve-like state wherein opiate CPP was always DA independent, and opiate withdrawal aversions were absent even in mice subjected to an opiate dependence and withdrawal induction protocol. Further, viral-mediated rescue of Cx36 in VTA GABA neurons was sufficient to restore their susceptibility to an ODW state wherein opiate CPP was DA dependent. Our findings reveal a functional role for VTA gap junctions that has eluded prevailing circuit models of addiction.


Asunto(s)
Conexinas , Neuronas GABAérgicas , Proteína delta-6 de Union Comunicante , Uniones Comunicantes , Trastornos Relacionados con Opioides , Área Tegmental Ventral , Animales , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Conexinas/metabolismo , Conexinas/genética , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Uniones Comunicantes/metabolismo , Uniones Comunicantes/efectos de los fármacos , Masculino , Ratas , Trastornos Relacionados con Opioides/metabolismo , Trastornos Relacionados con Opioides/fisiopatología , Mefloquina/farmacología , Ratones , Ratas Sprague-Dawley , Núcleo Tegmental Pedunculopontino/metabolismo , Núcleo Tegmental Pedunculopontino/efectos de los fármacos
2.
Biochim Biophys Acta Biomembr ; 1860(1): 102-123, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28577972

RESUMEN

Gap junctions provide the basis for electrical synapses between neurons. Early studies in well-defined circuits in lower vertebrates laid the foundation for understanding various properties conferred by electrical synaptic transmission. Knowledge surrounding electrical synapses in mammalian systems unfolded first with evidence indicating the presence of gap junctions between neurons in various brain regions, but with little appreciation of their functional roles. Beginning at about the turn of this century, new approaches were applied to scrutinize electrical synapses, revealing the prevalence of neuronal gap junctions, the connexin protein composition of many of those junctions, and the myriad diverse neural systems in which they occur in the mammalian CNS. Subsequent progress indicated that electrical synapses constitute key elements in synaptic circuitry, govern the collective activity of ensembles of electrically coupled neurons, and in part orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie fundamental integrative processes. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Asunto(s)
Encéfalo/metabolismo , Conexinas/metabolismo , Sinapsis Eléctricas/metabolismo , Uniones Comunicantes/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Animales , Humanos
3.
Eur J Neurosci ; 48(9): 3062-3081, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30295974

RESUMEN

Electrical synapses in the mammalian central nervous system (CNS) are increasingly recognized as highly complex structures for mediation of neuronal communication, both with respect to their capacity for dynamic short- and long-term modification in efficacy of synaptic transmission and their multimolecular regulatory and structural components. These two characteristics are inextricably linked, such that understanding of mechanisms that contribute to electrical synaptic plasticity requires knowledge of the molecular composition of electrical synapses and the functions of proteins associated with these synapses. Here, we provide evidence that the key component of gap junctions that form the majority of electrical synapses in the mammalian CNS, namely connexin36 (Cx36), directly interacts with the related E3 ubiquitin ligase proteins Ligand of NUMB protein X1 (LNX1) and Ligand of NUMB protein X2 (LNX2). This is based on immunofluorescence colocalization of LNX1 and LNX2 with Cx36-containing gap junctions in adult mouse brain versus lack of such coassociation in LNX null mice, coimmunoprecipitation of LNX proteins with Cx36, and pull-down of Cx36 with the second PDZ domain of LNX1 and LNX2. Furthermore, cotransfection of cultured cells with Cx36 and E3 ubiquitin ligase-competent LNX1 and LNX2 isoforms led to loss of Cx36-containing gap junctions between cells, whereas these junctions persisted following transfection with isoforms of these proteins that lack ligase activity. Our results suggest that a LNX protein mediates ubiquitination of Cx36 at neuronal gap junctions, with consequent Cx36 internalization, and may thereby contribute to intracellular mechanisms that govern the recently identified modifiability of synaptic transmission at electrical synapses.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Encéfalo/citología , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley , Roedores , Ubiquitina-Proteína Ligasas/deficiencia , Proteína delta-6 de Union Comunicante
4.
J Neurophysiol ; 115(4): 1836-59, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26763782

RESUMEN

Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in mammalian myelinated axons.


Asunto(s)
Axones/metabolismo , Conexinas/metabolismo , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Conducción Nerviosa , Canales de Potasio de la Superfamilia Shaker/metabolismo , Potenciales de Acción , Animales , Axones/fisiología , Conexinas/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/fisiología , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Sprague-Dawley
5.
Artículo en Inglés | MEDLINE | ID: mdl-39021417

RESUMEN

BACKGROUND: Sexually dimorphic spinal motoneurons (MNs) in the dorsomedial nucleus (DMN) and dorsolateral nucleus (DLN) as well as those in the cremaster nucleus are involved in reproductive behaviours, and the cremaster nucleus additionally contributes to testicular thermoregulation. It has been reported that MNs in DMN and DLN are extensively linked by gap junctions forming electrical synapses composed of connexin36 (Cx36) and there is evidence that subpopulation of MNs in the cremaster nucleus are also electrically coupled by these synapses. METHODOLOGY: We used immunofluorescence methods to detect enhanced green fluorescent protein (eGFP) reporter for Cx36 expression in these motor nuclei. RESULTS: We document in male mice that about half the MNs in each of DMN and DLN express eGFP, while the remaining half do not. Further, we found that the eGFP+ vs. eGFP- subsets of MNs in each of these motor nuclei innervate different target muscles; eGFP+ MNs in DMN and DLN project to sexually dimorphic bulbocavernosus and ischiocavernosus muscles, while the eGFP- subsets project to sexually non-dimorphic anal and external urethral sphincter muscles. Similarly, eGFP+ vs. eGFP- cremaster MNs were found to project to anatomically distinct portions of the cremaster muscle. By immunofluorescence, nearly all motoneurons in both DMN and DLN displayed punctate labelling for Cx36, including at eGFP+/eGFP+, eGFP+/eGFP- and eGFP-/eGFP- cell appositions. CONCLUSIONS: Most if not all motoneurons in DMN and DLN are electrically coupled, including sexually dimorphic and non-dimorphic motoneurons with each other, despite absence of eGFP reporter in the non-dimorphic populations in these nuclei that have selective projections to sexually non-dimorphic target muscles.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39021415

RESUMEN

BACKGROUND: Granule cells in the hippocampus project axons to hippocampal CA3 pyramidal cells where they form large mossy fiber terminals. We have reported that these terminals contain the gap junction protein connexin36 (Cx36) specifically in the stratum lucidum of rat ventral hippocampus, thus creating morphologically mixed synapses that have the potential for dual chemical/electrical transmission. METHODOLOGY: Here, we used various approaches to characterize molecular and electrophysiological relationships between the Cx36-containing gap junctions at mossy fiber terminals and their postsynaptic elements and to examine molecular relationships at mixed synapses in the brainstem. RESULTS: In rat and human ventral hippocampus, many of these terminals, identified by their selective expression of vesicular zinc transporter-3 (ZnT3), displayed multiple, immunofluorescent Cx36-puncta representing gap junctions, which were absent at mossy fiber terminals in the dorsal hippocampus. In rat, these were found in close proximity to the protein constituents of adherens junctions (i.e., N-cadherin and nectin-1) that are structural hallmarks of mossy fiber terminals, linking these terminals to the dendritic shafts of CA3 pyramidal cells, thus indicating the loci of gap junctions at these contacts. Cx36-puncta were also associated with adherens junctions at mixed synapses in the brainstem, supporting emerging views of the structural organization of the adherens junction-neuronal gap junction complex. Electrophysiologically induced long-term potentiation (LTP) of field responses evoked by mossy fiber stimulation was greater in the ventral than dorsal hippocampus. CONCLUSIONS: The electrical component of transmission at mossy fiber terminals may contribute to enhanced LTP responses in the ventral hippocampus.

7.
J Neurosci ; 32(13): 4341-59, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22457486

RESUMEN

Electrical synapses are known to form networks of extensively coupled neurons in various regions of the mammalian brain. The mesencephalic trigeminal (MesV) nucleus, formed by the somata of primary afferents originating in jaw-closing muscles, constitutes one of the first examples supporting the presence of electrical synapses in the mammalian CNS; however, the properties, functional organization, and developmental emergence of electrical coupling within this structure remain unknown. By combining electrophysiological, tracer coupling, and immunochemical analysis in brain slices of rat and mouse, we found that coupling is mostly restricted to pairs or small clusters of MesV neurons. Electrical transmission is supported by connexin36 (Cx36)-containing gap junctions at somato-somatic contacts where only a small proportion of channels appear to be open (∼0.1%). In marked contrast with most brain structures, coupling among MesV neurons increases with age, such that it is absent during early development and appears at postnatal day 8. Interestingly, the development of coupling parallels the development of intrinsic membrane properties responsible for repetitive firing in these neurons. We found that, acting together, sodium and potassium conductances enhance the transfer of signals with high-frequency content via electrical synapses, leading to strong spiking synchronization of the coupled neurons. Together, our data indicate that coupling in the MesV nucleus is restricted to mostly pairs of somata between which electrical transmission is supported by a surprisingly small fraction of the channels estimated to be present, and that coupling synergically interacts with specific membrane conductances to promote synchronization of these neurons.


Asunto(s)
Comunicación Celular/fisiología , Sinapsis Eléctricas/fisiología , Uniones Comunicantes/fisiología , Mesencéfalo/fisiología , Membranas Sinápticas/fisiología , Núcleos del Trigémino/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/fisiología , Conexinas/genética , Conexinas/metabolismo , Conexinas/fisiología , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Técnicas In Vitro , Ácido Meclofenámico/farmacología , Potenciales de la Membrana/fisiología , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Molecular/métodos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Membranas Sinápticas/metabolismo , Núcleos del Trigémino/citología , Proteína delta-6 de Union Comunicante
8.
J Neuroendocrinol ; : e13258, 2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36989439

RESUMEN

Maternal obesity is a serious health concern because it increases risks of neurological disorders, including anxiety and peripartum depression. In mice, a high fat diet (HFD) in pregnancy can negatively affect placental structure and function as well as maternal behavior reflected by impaired nest building and pup-retrieval. In humans, maternal obesity in pregnancy is associated with reduced placental lactogen (PL) gene expression, which has been linked to a higher risk of depression. PL acting predominantly through the prolactin receptor maintains energy homeostasis and is a marker of placenta villous trophoblast differentiation during pregnancy. Impaired neurogenesis and low serum levels of brain-derived neurotrophic factor (BDNF) have also been implicated in depression. Augmented neurogenesis in brain during pregnancy was reported in the subventricular zone (SVZ) of mice at gestation day 7 and linked to increased prolactin receptor signaling. Here, we used transgenic CD-1 mice that express human (h) PL during pregnancy to investigate whether the negative effects of diet on maternal behavior are mitigated in these (CD-1[hGH/PL]) mice. Specifically, we examined the effect of a HFD on nest building prepartum and pup retrieval postpartum, as well as on brain BDNF levels and neurogenesis. In contrast to wild-type CD-1[WT]mice, CD-1[hGH/PL] mice displayed significantly less anxiety-like behavior, and showed no impairment in prepartum nest building or postpartum pup-retrieval when fed a HFD. Furthermore, the HFD decreased prepartum and increased postpartum BDNF levels in CD-1[WT] but not CD-1[hGH/PL] mice. Finally, neurogenesis in the SVZ as well as phosphorylated mitogen-activated protein kinase, indicative of lactogenic signaling, appeared unaffected by pregnancy and diet at gestation day 7 in CD-1[hGH/PL] mice. These observations indicate that CD-1[hGH/PL] mice are resistant to the negative effects of HFD reported for CD-1[WT] mice, including effects on maternal behaviors and BDNF levels, and potentially, neurogenesis. This difference probably reflects a direct or indirect effect of the products of the hGH/PL transgene.

9.
J Physiol ; 590(16): 3821-39, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22615430

RESUMEN

Electrical synapses formed by gap junctions containing connexin36 (Cx36) promote synchronous activity of interneurones in many regions of mammalian brain; however, there is limited information on the role of electrical synapses in spinal neuronal networks. Here we show that Cx36 is widely distributed in the spinal cord and is involved in mechanisms that govern presynaptic inhibition of primary afferent terminals. Electrophysiological recordings were made in spinal cord preparations from 8- to 11-day-old wild-type and Cx36 knockout mice. Several features associated with presynaptic inhibition evoked by conditioning stimulation of low threshold hindlimb afferents were substantially compromised in Cx36 knockout mice. Dorsal root potentials (DRPs) evoked by low intensity stimulation of sensory afferents were reduced in amplitude by 79% and in duration by 67% in Cx36 knockouts. DRPs were similarly affected in wild-types by bath application of gap junction blockers. Consistent with presynaptic inhibition of group Ia muscle spindle afferent terminals on motoneurones described in adult cats, conditioning stimulation of an adjacent dorsal root evoked a long duration inhibition of monosynaptic reflexes recorded from the ventral root in wild-type mice, and this inhibition was antagonized by bicuculline. The same conditioning stimulation failed to inhibit monosynaptic reflexes in Cx36 knockout mice. Immunofluorescence labelling for Cx36 was found throughout the dorsal and ventral horns of the spinal cord of juvenile mice and persisted in mature animals. In deep dorsal horn laminae, where interneurones involved in presynaptic inhibition of large diameter muscle afferents are located, cells were extensively dye-coupled following intracellular neurobiotin injection. Coupled cells displayed Cx36-positive puncta along their processes. Our results indicate that gap junctions formed by Cx36 in spinal cord are required for maintenance of presynaptic inhibition, including the regulation of transmission from Ia muscle spindle afferents. In addition to a role in presynaptic inhibition in juvenile animals, the persistence of Cx36 expression among spinal neuronal populations in the adult mouse suggests that the contribution of electrical synapses to integrative processes in fully mature spinal cord may be as diverse as that found in other areas of the CNS.


Asunto(s)
Conexinas/metabolismo , Neuronas/metabolismo , Médula Espinal/fisiología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Conexinas/genética , Fenómenos Electrofisiológicos , Uniones Comunicantes , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Proteína delta-6 de Union Comunicante
10.
J Membr Biol ; 245(5-6): 283-90, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22729690

RESUMEN

Electrical synapses formed by gap junctions between neurons create networks of electrically coupled neurons in the mammalian brain, where these networks have been found to play important functional roles. In most cases, interneuronal gap junctions occur at remote dendro-dendritic contacts, making difficult accurate characterization of their physiological properties and correlation of these properties with their anatomical and morphological features of the gap junctions. In the mesencephalic trigeminal (MesV) nucleus where neurons are readily accessible for paired electrophysiological recordings in brain stem slices, our recent data indicate that electrical transmission between MesV neurons is mediated by connexin36 (Cx36)-containing gap junctions located at somato-somatic contacts. We here review evidence indicating that electrical transmission between these neurons is supported by a very small fraction of the gap junction channels present at cell-cell contacts. Acquisition of this evidence was enabled by the unprecedented experimental access of electrical synapses between MesV neurons, which allowed estimation of the average number of open channels mediating electrical coupling in relation to the average number of gap junction channels present at these contacts. Our results indicate that only a small proportion of channels (~0.1 %) appear to be conductive. On the basis of similarities with other preparations, we postulate that this phenomenon might constitute a general property of vertebrate electrical synapses, reflecting essential aspects of gap junction function and maintenance.


Asunto(s)
Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Neuronas/metabolismo , Animales , Comunicación Celular/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Transmisión Sináptica/fisiología , Proteína delta-6 de Union Comunicante
11.
J Membr Biol ; 245(5-6): 333-44, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22760604

RESUMEN

Despite the combination of light-microscopic immunocytochemistry, histochemical mRNA detection techniques and protein reporter systems, progress in identifying the protein composition of neuronal versus glial gap junctions, determination of the differential localization of their constituent connexin proteins in two apposing membranes and understanding human neurological diseases caused by connexin mutations has been problematic due to ambiguities introduced in the cellular and subcellular assignment of connexins. Misassignments occurred primarily because membranes and their constituent proteins are below the limit of resolution of light microscopic imaging techniques. Currently, only serial thin-section transmission electron microscopy and freeze-fracture replica immunogold labeling have sufficient resolution to assign connexin proteins to either or both sides of gap junction plaques. However, freeze-fracture replica immunogold labeling has been limited because conventional freeze fracturing allows retrieval of only one of the two membrane fracture faces within a gap junction, making it difficult to identify connexin coupling partners in hemiplaques removed by fracturing. We now summarize progress in ascertaining the connexin composition of two coupled hemiplaques using matched double-replicas that are labeled simultaneously for multiple connexins. This approach allows unambiguous identification of connexins and determination of the membrane "sidedness" and the identities of connexin coupling partners in homotypic and heterotypic gap junctions of vertebrate neurons.


Asunto(s)
Conexinas/metabolismo , Técnica de Fractura por Congelación/métodos , Uniones Comunicantes/metabolismo , Inmunohistoquímica/métodos , Animales , Astrocitos/metabolismo , Astrocitos/ultraestructura , Conexinas/ultraestructura , Uniones Comunicantes/ultraestructura , Humanos , Neuronas/metabolismo , Neuronas/ultraestructura , Oligodendroglía/metabolismo , Oligodendroglía/ultraestructura
12.
Proc Natl Acad Sci U S A ; 105(34): 12545-50, 2008 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-18719117

RESUMEN

Although regulation of chemical transmission is known to involve the interaction of receptors with scaffold proteins, little is known about the existence of protein-protein interactions in regulating gap junction-mediated electrical synapses. The scaffold protein zonula-occludens-1 (ZO-1), a member of the MAGUK family of proteins, was reported to interact with several connexins (Cxs). We show here that ZO-1 extensively colocalizes with Cx35 at identifiable "mixed" (electrical and chemical) contacts on goldfish Mauthner cells, a model synapse for the study of vertebrate electrical transmission where it is possible to correlate physiological properties with molecular composition. Further, our analysis indicates that these proteins directly interact at goldfish electrical synapses. In contrast to Cx43, which interacts with ZO-1 via the PDZ2 domain, Cx35 interacts with ZO-1 via the PDZ1 domain, and this association is of lower affinity. The properties of the ZO-1/Cx35 association suggest the existence of a more dynamic relation between these two proteins, possibly including a role of ZO-1 in regulating gap junctional conductance at these highly modifiable electrical synapses. The interaction of ZO-1 with conserved regions of the C termini of Cx35/Cx36 orthologs may have a common function at electrical synapses of mammals and other vertebrates.


Asunto(s)
Conexinas/metabolismo , Sinapsis Eléctricas , Proteínas del Ojo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Fosfoproteínas/metabolismo , Animales , Sitios de Unión , Uniones Comunicantes , Carpa Dorada , Células HeLa , Humanos , Unión Proteica , Rombencéfalo/citología , Transfección , Proteína de la Zonula Occludens-1
13.
Artículo en Inglés | MEDLINE | ID: mdl-33500746

RESUMEN

Electrical synapses formed by gap junctions occur at a variety of neuronal subcellular sites in the mammalian central nervous system (CNS), including at somatic, dendritic and axon terminal compartments. Numerous electrophysiological studies using mice and rats, as well as computer modelling approaches, have predicted the additional occurrence of electrical synapses between axons near their emergence from neuronal somata. Here, we used immunofluorescence methods to search for localization of the neuronal gap junction-forming protein connexin36 (Cx36) along axon initial segments (AISs) labelled for the AIS marker ankyrinG. Immunofluorescent Cx36-puncta were found to be associated with AISs in several CNS regions of mice, including the spinal cord, inferior olive and cerebral cortex. Localization of Cx36-puncta at AISs was confirmed by confocal single scan and 3D imaging, immunofluorescence intensity profiling and high resolution structured illumination microscopy (SIM). AISs measuring up to 30 µm in length displayed typically a single Cx36-punctum and the incidence of these long AISs displaying Cx36-puncta ranged from 3% to 7% in the inferior olive and in various layers of the cerebral cortex. In the inferior olive, the gap junction associated protein zonula occludens-1 (ZO-1) was found to be co-localized with Cx36-puncta on AISs, indicating that these puncta have some of the molecular constituents of gap junctions. Our results add to the neuronal subcellular locations at which Cx36 is deployed, and raise possibilities for its involvement in novel functions in the AIS compartment.

14.
Artículo en Inglés | MEDLINE | ID: mdl-32211119

RESUMEN

Human trabecular meshwork (TM) cells play pivotal roles in maintaining homeostasis of intraocular pressure via regulation of aqueous humor outflow. These cells are capable of phagocytosis, which is considered to be essential for their regulatory function. In addition, there is a strong expression of the gap junction protein connexin43 (Cx43) in the TM. Here, we investigated functional relationships between phagocytosis activity of TM cells and their expression of Cx43. Phagocytosis was measured by showing the ability of TM cells to engulf inert fluorescent particles consisting of pHrodo. We found that internalized pHrodo was partially co-localized with Cx43 and that the phagocytic activity was dramatically reduced after knockdown of Cx43 using lentiviral Cx43 shRNA. These results suggest that Cx43 is involved in the regulation of phagocytosis by TM cells.

15.
Artículo en Inglés | MEDLINE | ID: mdl-32211117

RESUMEN

Cellular structures that perform essential homeostatic functions include tight junctions, gap junctions, desmosomes and adherens junctions. The aqueous humor, produced by the ciliary body, passes into the anterior chamber of the eye and is filtered by the trabecular meshwork (TM), a tiny tissue found in the angle of the eye. This tissue, along with Schlemm's canal (SC) inner wall cells, is thought to control intraocular pressure (IOP) homeostasis for normal, optimal vision. The actin cytoskeleton of the tissue plays a regulatory role in maintaining IOP. One of the key risk factors for primary open angle glaucoma is persistent elevation of IOP, which compromises the optic nerve. The ZO-1 (Zonula Occludens-1), extracellular matrix protein integrins, and gap junction protein connexin43 (Cx43) are widely expressed in many different cell populations. Here, we investigated the localization and interactions of ZO-1, α3 integrin, ß1 integrin, and Cx43 in cultured porcine TM and SC cells using RT-PCR, western immunoblotting and immunofluorescence labeling with confocal microscopy, along with co-immunoprecipitation. ZO-1 partially co-localized with α3 integrin, but not with ß1 integrin, and co-immunoprecipitated with Cx43, as well as with α3 integrin. The association of ZO-1 with α3 integrin and Cx43 suggests that these proteins may form a multiple protein complex in porcine TM and SC cells. Since integrins interact with the actin cytoskeleton via scaffolding proteins, these results implicate junctional and scaffolding protein ZO-1 as a potential control point in regulation of IOP to normal levels for glaucoma therapy.

16.
Rev Neurosci ; 31(2): 121-141, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31536035

RESUMEN

Cell assemblies and central pattern generators (CPGs) are related types of neuronal networks: both consist of interacting groups of neurons whose collective activities lead to defined functional outputs. In the case of a cell assembly, the functional output may be interpreted as a representation of something in the world, external or internal; for a CPG, the output 'drives' an observable (i.e. motor) behavior. Electrical coupling, via gap junctions, is critical for the development of CPGs, as well as for their actual operation in the adult animal. Electrical coupling is also known to be important in the development of hippocampal and neocortical principal cell networks. We here argue that electrical coupling - in addition to chemical synapses - may therefore contribute to the formation of at least some cell assemblies in adult animals.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Sinapsis Eléctricas/fisiología , Uniones Comunicantes/metabolismo , Hipocampo/metabolismo , Sinapsis/fisiología , Animales , Humanos , Neuronas Motoras/fisiología
17.
J Neurosci ; 28(39): 9769-89, 2008 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-18815262

RESUMEN

Mammalian retinas contain abundant neuronal gap junctions, particularly in the inner plexiform layer (IPL), where the two principal neuronal connexin proteins are Cx36 and Cx45. Currently undetermined are coupling relationships between these connexins and whether both are expressed together or separately in a neuronal subtype-specific manner. Although Cx45-expressing neurons strongly couple with Cx36-expressing neurons, possibly via heterotypic gap junctions, Cx45 and Cx36 failed to form functional heterotypic channels in vitro. We now show that Cx36 and Cx45 coexpressed in HeLa cells were colocalized in immunofluorescent puncta between contacting cells, demonstrating targeting/scaffolding competence for both connexins in vitro. However, Cx36 and Cx45 expressed separately did not form immunofluorescent puncta containing both connexins, supporting lack of heterotypic coupling competence. In IPL, 87% of Cx45-immunofluorescent puncta were colocalized with Cx36, supporting either widespread heterotypic coupling or bihomotypic coupling. Ultrastructurally, Cx45 was detected in 9% of IPL gap junction hemiplaques, 90-100% of which also contained Cx36, demonstrating connexin coexpression and cotargeting in virtually all IPL neurons that express Cx45. Moreover, double replicas revealed both connexins in separate domains mirrored on both sides of matched hemiplaques. With previous evidence that Cx36 interacts with PDZ1 domain of zonula occludens-1 (ZO-1), we show that Cx45 interacts with PDZ2 domain of ZO-1, and that Cx36, Cx45, and ZO-1 coimmunoprecipitate, suggesting that ZO-1 provides for coscaffolding of Cx45 with Cx36. These data document that in Cx45-expressing neurons of IPL, Cx45 is almost always accompanied by Cx36, forming "bihomotypic" gap junctions, with Cx45 structurally coupling to Cx45 and Cx36 coupling to Cx36.


Asunto(s)
Conexinas/metabolismo , Sinapsis Eléctricas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Retina/citología , Uniones Estrechas/metabolismo , Animales , Conexinas/deficiencia , Conexinas/genética , Sinapsis Eléctricas/ultraestructura , Femenino , Técnica de Fractura por Congelación/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Rastreo/métodos , Ratas , Ratas Wistar , Transfección/métodos , Proteína de la Zonula Occludens-1 , Proteína delta-6 de Union Comunicante
18.
Neurosci Lett ; 695: 53-64, 2019 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28911821

RESUMEN

Electrical synapses with diverse configurations and functions occur at a variety of interneuronal appositions, thereby significantly expanding the physiological complexity of neuronal circuitry over that provided solely by chemical synapses. Gap junctions between apposed dendritic and somatic plasma membranes form "purely electrical" synapses that allow for electrical communication between coupled neurons. In addition, gap junctions at axon terminals synapsing on dendrites and somata allow for "mixed" (dual chemical+electrical) synaptic transmission. "Dual transmission" was first documented in the autonomic nervous system of birds, followed by its detection in the central nervous systems of fish, amphibia, and reptiles. Subsequently, mixed synapses have been detected in several locations in the mammalian CNS, where their properties and functional roles remain undetermined. Here, we review available evidence for the presence, complex structural composition, and emerging functional properties of mixed synapses in the mammalian CNS.


Asunto(s)
Sinapsis Eléctricas/fisiología , Uniones Comunicantes/fisiología , Mamíferos/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Sistema Nervioso Central/metabolismo , Conexinas/fisiología , Neuronas/fisiología
19.
J Cereb Blood Flow Metab ; 39(3): 481-496, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29072857

RESUMEN

Astrocytes express neurotransmitter receptors that serve as sensors of synaptic activity and initiate signals leading to activity-dependent local vasodilation and increases in blood flow. We previously showed that arteriolar vasodilation produced by activation of cortical astrocytes is dependent on endothelial nitric oxide synthase (eNOS) and endogenous agonists of N-methyl-D-aspartate (NMDA) receptors. Here, we tested the hypothesis that these effects are mediated by NMDA receptors expressed by brain endothelial cells. Primary endothelial cultures expressed NMDA receptor subunits and produced nitric oxide in response to co-agonists, glutamate and D-serine. In cerebral cortex in situ, immunoelectron microscopy revealed that endothelial cells express the GluN1 NMDA receptor subunit at basolateral membrane surfaces in an orientation suitable for receiving intercellular messengers from brain cells. In cortical slices, activation of astrocytes by two-photon flash photolysis of a caged Ca2+ compound or application of a metabotropic glutamate receptor agonist caused endothelial NO generation and local vasodilation. These effects were mitigated by NMDA receptor antagonists and conditional gene silencing of endothelial GluN1, indicating at least partial dependence on endothelial NMDA receptors. Our observations identify a novel astrocyte-endothelial vasodilatory signaling axis that could contribute to endothelium-dependent vasodilation in brain functional hyperemia.


Asunto(s)
Astrocitos/fisiología , Corteza Cerebral/irrigación sanguínea , Células Endoteliales/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vasodilatación , Animales , Corteza Cerebral/fisiología , Femenino , Hiperemia/etiología , Masculino , Ratones , Óxido Nítrico/biosíntesis , Receptores de Glutamato Metabotrópico/agonistas , Transducción de Señal
20.
Dev Biol ; 312(1): 258-71, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17961533

RESUMEN

The gap junction gene Connexin31.1 has been reported to be expressed predominantly in the epidermis of murine skin. To study the function of this gene, we generated mice in which the coding DNA of the Connexin31.1 gene was replaced by lacZ reporter coding DNA. Using beta-galactosidase staining, we have shown that lacZ/Connexin31.1 was expressed in the spinous and granular layers of the epidermis, in cells of olfactory epithelium and in the vomeronasal organ. During embryogenesis, Connexin31.1 was co-expressed with another isoform, Connexin31, in the post-implantation trophoblast cell lineage and, later in gestation, in placental glycogen cells. Although homozygous Connexin31.1-deficient mice were fertile and showed no morphological or functional defects in adult organs expressing this gene, 30% of the offspring expected according to Mendelian inheritance were lost between embryonic days 11.5 and 14.5 and surviving embryos were significantly reduced in weight near the end of pregnancy. Placentas of Connexin31.1-deficient embryos were reduced in weight and showed altered morphology of the spongiotrophoblast and labyrinth layer. The spongiotrophoblast formed a compact barrier at the decidual border that might restrict the maternal blood supply. We conclude that Connexin31.1 is critical for normal placental development but appears to be functionally compensated by other connexin isoforms in the embryo proper and adult mouse.


Asunto(s)
Conexinas/deficiencia , Placentación , Animales , Conexinas/genética , Implantación del Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Femenino , Viabilidad Fetal , Marcación de Gen , Genes Reporteros , Heterocigoto , Ratones , Fenotipo , Placenta/citología , Placenta/embriología , Embarazo , Sensación , Piel/citología , Piel/metabolismo , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA