Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 502(7471): 377-80, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23995691

RESUMEN

Statins are prescribed widely to lower plasma low-density lipoprotein (LDL) concentrations and cardiovascular disease risk and have been shown to have beneficial effects in a broad range of patients. However, statins are associated with an increased risk, albeit small, of clinical myopathy and type 2 diabetes. Despite evidence for substantial genetic influence on LDL concentrations, pharmacogenomic trials have failed to identify genetic variations with large effects on either statin efficacy or toxicity, and have produced little information regarding mechanisms that modulate statin response. Here we identify a downstream target of statin treatment by screening for the effects of in vitro statin exposure on genetic associations with gene expression levels in lymphoblastoid cell lines derived from 480 participants of a clinical trial of simvastatin treatment. This analysis identified six expression quantitative trait loci (eQTLs) that interacted with simvastatin exposure, including rs9806699, a cis-eQTL for the gene glycine amidinotransferase (GATM) that encodes the rate-limiting enzyme in creatine synthesis. We found this locus to be associated with incidence of statin-induced myotoxicity in two separate populations (meta-analysis odds ratio = 0.60). Furthermore, we found that GATM knockdown in hepatocyte-derived cell lines attenuated transcriptional response to sterol depletion, demonstrating that GATM may act as a functional link between statin-mediated lowering of cholesterol and susceptibility to statin-induced myopathy.


Asunto(s)
Amidinotransferasas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Enfermedades Musculares/inducido químicamente , Sitios de Carácter Cuantitativo/genética , Simvastatina/efectos adversos , Amidinotransferasas/deficiencia , Amidinotransferasas/metabolismo , Línea Celular , Colesterol/deficiencia , Colesterol/metabolismo , Colesterol/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Linfocitos/citología , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Polimorfismo de Nucleótido Simple/genética , Simvastatina/farmacología , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transcripción Genética/efectos de los fármacos
2.
Hum Mol Genet ; 25(14): 3106-3116, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27206982

RESUMEN

A large haplotype on chromosome 19p13.11 tagged by rs10401969 in intron 8 of SURP and G patch domain containing 1 (SUGP1) is associated with coronary artery disease (CAD), plasma LDL cholesterol levels, and other energy metabolism phenotypes. Recent studies have suggested that TM6SF2 is the causal gene within the locus, but we postulated that this locus could harbor additional CAD risk genes, including the putative splicing factor SUGP1 Indeed, we found that rs10401969 regulates SUGP1 exon 8 skipping, causing non-sense-mediated mRNA decay. Hepatic Sugp1 overexpression in CD1 male mice increased plasma cholesterol levels 20-50%. In human hepatoma cell lines, SUGP1 knockdown stimulated 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) alternative splicing and decreased HMGCR transcript stability, thus reducing cholesterol synthesis and increasing LDL uptake. Our results strongly support a role for SUGP1 as a novel regulator of cholesterol metabolism and suggest that it contributes to the relationship between rs10401969 and plasma cholesterol.


Asunto(s)
LDL-Colesterol/genética , Colesterol/genética , Enfermedad de la Arteria Coronaria/genética , Metabolismo de los Lípidos/genética , Factores de Empalme de ARN/genética , Empalme Alternativo/genética , Animales , Colesterol/sangre , LDL-Colesterol/sangre , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/patología , Exones/genética , Regulación de la Expresión Génica , Haplotipos , Células Hep G2 , Humanos , Masculino , Ratones , Polimorfismo de Nucleótido Simple , Factores de Empalme de ARN/biosíntesis , Estabilidad del ARN
3.
Hum Mol Genet ; 23(2): 319-32, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24001602

RESUMEN

3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGCR) encodes the rate-limiting enzyme in the cholesterol biosynthesis pathway and is inhibited by statins, a class of cholesterol-lowering drugs. Expression of an alternatively spliced HMGCR transcript lacking exon 13, HMGCR13(-), has been implicated in the variation of plasma LDL-cholesterol (LDL-C) and is the single most informative molecular marker of LDL-C response to statins. Given the physiological importance of this transcript, our goal was to identify molecules that regulate HMGCR alternative splicing. We recently reported gene expression changes in 480 lymphoblastoid cell lines (LCLs) after in vitro simvastatin treatment, and identified a number of statin-responsive genes involved in mRNA splicing. Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) was chosen for follow-up since rs3846662, an HMGCR SNP that regulates exon 13 skipping, was predicted to alter an HNRNPA1 binding motif. Here, we not only demonstrate that rs3846662 modulates HNRNPA1 binding, but also that sterol depletion of human hepatoma cell lines reduced HNRNPA1 mRNA levels, an effect that was reversed with sterol add-back. Overexpression of HNRNPA1 increased the ratio of HMGCR13(-) to total HMGCR transcripts by both directly increasing exon 13 skipping in an allele-related manner and specifically stabilizing the HMGCR13(-) transcript. Importantly, HNRNPA1 overexpression also diminished HMGCR enzyme activity, enhanced LDL-C uptake and increased cellular apolipoprotein B (APOB). rs1920045, an SNP associated with HNRNPA1 exon 8 alternative splicing, was also associated with smaller statin-induced reduction in total cholesterol from two independent clinical trials. These results suggest that HNRNPA1 plays a role in the variation of cardiovascular disease risk and statin response.


Asunto(s)
Empalme Alternativo , LDL-Colesterol/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Alelos , Apolipoproteínas B/metabolismo , Línea Celular Tumoral , Exones , Regulación Neoplásica de la Expresión Génica , Variación Genética , Células Hep G2 , Hepatocitos , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Polimorfismo de Nucleótido Simple , Unión Proteica , Estabilidad del ARN
4.
Arterioscler Thromb Vasc Biol ; 34(9): 1917-23, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25035345

RESUMEN

OBJECTIVE: Interindividual variation in pathways affecting cellular cholesterol metabolism can influence levels of plasma cholesterol, a well-established risk factor for cardiovascular disease. Inherent variation among immortalized lymphoblastoid cell lines from different donors can be leveraged to discover novel genes that modulate cellular cholesterol metabolism. The objective of this study was to identify novel genes that regulate cholesterol metabolism by testing for evidence of correlated gene expression with cellular levels of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) mRNA, a marker for cellular cholesterol homeostasis, in a large panel of lymphoblastoid cell lines. APPROACH AND RESULTS: Expression array profiling was performed on 480 lymphoblastoid cell lines established from participants of the Cholesterol and Pharmacogenetics (CAP) statin clinical trial, and transcripts were tested for evidence of correlated expression with HMGCR as a marker of intracellular cholesterol homeostasis. Of these, transmembrane protein 55b (TMEM55B) showed the strongest correlation (r=0.29; P=4.0E-08) of all genes not previously implicated in cholesterol metabolism and was found to be sterol regulated. TMEM55B knockdown in human hepatoma cell lines promoted the decay rate of the low-density lipoprotein receptor, reduced cell surface low-density lipoprotein receptor protein, impaired low-density lipoprotein uptake, and reduced intracellular cholesterol. CONCLUSIONS: Here, we report identification of TMEM55B as a novel regulator of cellular cholesterol metabolism through the combination of gene expression profiling and functional studies. The findings highlight the value of an integrated genomic approach for identifying genes that influence cholesterol homeostasis.


Asunto(s)
Colesterol/metabolismo , Linfocitos/metabolismo , Receptores de LDL/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Perfilación de la Expresión Génica , Células Hep G2 , Hepatocitos/metabolismo , Homeostasis , Humanos , Hidroximetilglutaril-CoA Reductasas/biosíntesis , Hidroximetilglutaril-CoA Reductasas/genética , Líquido Intracelular/metabolismo , Metabolismo de los Lípidos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
5.
PLoS Genet ; 8(11): e1003058, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166513

RESUMEN

Although statin drugs are generally efficacious for lowering plasma LDL-cholesterol levels, there is considerable variability in response. To identify candidate genes that may contribute to this variation, we used an unbiased genome-wide filter approach that was applied to 10,149 genes expressed in immortalized lymphoblastoid cell lines (LCLs) derived from 480 participants of the Cholesterol and Pharmacogenomics (CAP) clinical trial of simvastatin. The criteria for identification of candidates included genes whose statin-induced changes in expression were correlated with change in expression of HMGCR, a key regulator of cellular cholesterol metabolism and the target of statin inhibition. This analysis yielded 45 genes, from which RHOA was selected for follow-up because it has been found to participate in mediating the pleiotropic but not the lipid-lowering effects of statin treatment. RHOA knock-down in hepatoma cell lines reduced HMGCR, LDLR, and SREBF2 mRNA expression and increased intracellular cholesterol ester content as well as apolipoprotein B (APOB) concentrations in the conditioned media. Furthermore, inter-individual variation in statin-induced RHOA mRNA expression measured in vitro in CAP LCLs was correlated with the changes in plasma total cholesterol, LDL-cholesterol, and APOB induced by simvastatin treatment (40 mg/d for 6 wk) of the individuals from whom these cell lines were derived. Moreover, the minor allele of rs11716445, a SNP located in a novel cryptic RHOA exon, dramatically increased inclusion of the exon in RHOA transcripts during splicing and was associated with a smaller LDL-cholesterol reduction in response to statin treatment in 1,886 participants from the CAP and Pravastatin Inflamation and CRP Evaluation (PRINCE; pravastatin 40 mg/d) statin clinical trials. Thus, an unbiased filter approach based on transcriptome-wide profiling identified RHOA as a gene contributing to variation in LDL-cholesterol response to statin, illustrating the power of this approach for identifying candidate genes involved in drug response phenotypes.


Asunto(s)
Biomarcadores Farmacológicos/metabolismo , Colesterol , Simvastatina/administración & dosificación , Proteína de Unión al GTP rhoA , Alelos , Línea Celular Transformada , Colesterol/genética , Colesterol/metabolismo , Ensayos Clínicos como Asunto , Expresión Génica/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/genética , Polimorfismo de Nucleótido Simple , Pravastatina/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
6.
Genome Med ; 16(1): 93, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061094

RESUMEN

BACKGROUND: Statins lower circulating low-density lipoprotein cholesterol (LDLC) levels and reduce cardiovascular disease risk. Though highly efficacious in general, there is considerable inter-individual variation in statin efficacy that remains largely unexplained. METHODS: To identify novel genes that may modulate statin-induced LDLC lowering, we used RNA-sequencing data from 426 control- and 2 µM simvastatin-treated lymphoblastoid cell lines (LCLs) derived from European and African American ancestry participants of the Cholesterol and Pharmacogenetics (CAP) 40 mg/day 6-week simvastatin clinical trial (ClinicalTrials.gov Identifier: NCT00451828). We correlated statin-induced changes in LCL gene expression with plasma LDLC statin response in the corresponding CAP participants. For the most correlated gene identified (ZNF335), we followed up in vivo by comparing plasma cholesterol levels, lipoprotein profiles, and lipid statin response between wild-type mice and carriers of a hypomorphic (partial loss of function) missense mutation in Zfp335 (the mouse homolog of ZNF335). RESULTS: The statin-induced expression changes of 147 human LCL genes were significantly correlated to the plasma LDLC statin responses of the corresponding CAP participants in vivo (FDR = 5%). The two genes with the strongest correlations were zinc finger protein 335 (ZNF335 aka NIF-1, rho = 0.237, FDR-adj p = 0.0085) and CCR4-NOT transcription complex subunit 3 (CNOT3, rho = 0.233, FDR-adj p = 0.0085). Chow-fed mice carrying a hypomorphic missense (R1092W; aka bloto) mutation in Zfp335 had significantly lower non-HDL cholesterol levels than wild-type C57BL/6J mice in a sex combined model (p = 0.04). Furthermore, male (but not female) mice carrying the Zfp335R1092W allele had significantly lower total and HDL cholesterol levels than wild-type mice. In a separate experiment, wild-type mice fed a control diet for 4 weeks and a matched simvastatin diet for an additional 4 weeks had significant statin-induced reductions in non-HDLC (-43 ± 18% and -23 ± 19% for males and females, respectively). Wild-type male (but not female) mice experienced significant reductions in plasma LDL particle concentrations, while male mice carrying Zfp335R1092W allele(s) exhibited a significantly blunted LDL statin response. CONCLUSIONS: Our in vitro and in vivo studies identified ZNF335 as a novel modulator of plasma cholesterol levels and statin response, suggesting that variation in ZNF335 activity could contribute to inter-individual differences in statin clinical efficacy.


Asunto(s)
LDL-Colesterol , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Simvastatina , Animales , Humanos , Ratones , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Simvastatina/farmacología , LDL-Colesterol/sangre , Línea Celular , Masculino , Femenino , Perfilación de la Expresión Génica , Transcriptoma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Colesterol/sangre , Mutación Missense
7.
bioRxiv ; 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37397985

RESUMEN

Background: Statins lower circulating low-density lipoprotein cholesterol (LDLC) levels and reduce cardiovascular disease risk. Though highly efficacious in general, there is considerable inter-individual variation in statin efficacy that remains largely unexplained. Methods: To identify novel genes that may modulate statin-induced LDLC lowering, we used RNA-sequencing data from 426 control- and 2 µM simvastatin-treated lymphoblastoid cell lines (LCLs) derived from European and African American ancestry participants of the Cholesterol and Pharmacogenetics (CAP) 40 mg/day 6-week simvastatin clinical trial (ClinicalTrials.gov Identifier: NCT00451828). We correlated statin-induced changes in LCL gene expression with plasma LDLC statin response in the corresponding CAP participants. For the most correlated gene identified (ZNF335), we followed up in vivo by comparing plasma cholesterol levels, lipoprotein profiles, and lipid statin response between wild-type mice and carriers of a hypomorphic (partial loss of function) missense mutation in Zfp335 (the mouse homolog of ZNF335). Results: The statin-induced expression changes of 147 human LCL genes were significantly correlated to the plasma LDLC statin responses of the corresponding CAP participants in vivo (FDR=5%). The two genes with the strongest correlations were zinc finger protein 335 (ZNF335 aka NIF-1, rho=0.237, FDR-adj p=0.0085) and CCR4-NOT transcription complex subunit 3 (CNOT3, rho=0.233, FDR-adj p=0.0085). Chow-fed mice carrying a hypomorphic missense (R1092W; aka bloto) mutation in Zfp335 had significantly lower non-HDL cholesterol levels than wild type C57BL/6J mice in a sex combined model (p=0.04). Furthermore, male (but not female) mice carrying the Zfp335R1092W allele had significantly lower total and HDL cholesterol levels than wild-type mice. In a separate experiment, wild-type mice fed a control diet for 4 weeks and a matched simvastatin diet for an additional 4 weeks had significant statin-induced reductions in non-HDLC (-43±18% and -23±19% for males and females, respectively). Wild-type male (but not female) mice experienced significant reductions in plasma LDL particle concentrations, while male mice carrying Zfp335R1092W allele(s) exhibited a significantly blunted LDL statin response. Conclusions: Our in vitro and in vivo studies identified ZNF335 as a novel modulator of plasma cholesterol levels and statin response, suggesting that variation in ZNF335 activity could contribute to inter-individual differences in statin clinical efficacy.

8.
Circ Cardiovasc Genet ; 9(3): 223-30, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27071970

RESUMEN

BACKGROUND: Numerous genetic contributors to cardiovascular disease risk have been identified through genome-wide association studies; however, identifying the molecular mechanism underlying these associations is not straightforward. The Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) trial of rosuvastatin users identified a sub-genome-wide association of rs6924995, a single-nucleotide polymorphism ≈10 kb downstream of myosin regulatory light chain interacting protein (MYLIP, aka IDOL and inducible degrader of low-density lipoprotein receptor [LDLR]), with LDL cholesterol statin response. Interestingly, although this signal was initially attributed to MYLIP, rs6924995 lies within RP1-13D10.2, an uncharacterized long noncoding RNA. METHODS AND RESULTS: Using simvastatin and sham incubated lymphoblastoid cell lines from participants of the Cholesterol and Pharmacogenetics (CAP) simvastatin clinical trial, we found that statin-induced change in RP1-13D10.2 levels differed between cell lines from the tails of the white and black low-density lipoprotein cholesterol response distributions, whereas no difference in MYLIP was observed. RP1-13D10.2 overexpression in Huh7 and HepG2 increased LDLR transcript levels, increased LDL uptake, and decreased media levels of apolipoprotein B. In addition, we found a trend of slight differences in the effects of RP1-13D10.2 overexpression on LDLR transcript levels between hepatoma cells transfected with the rs6924995 A versus G allele and a suggestion of an association between rs6924995 and RP1-10D13.2 expression levels in the CAP lymphoblastoid cell lines. Finally, RP1-13D10.2 expression levels seem to be sterol regulated, consistent with its potential role as a novel lipid regulator. CONCLUSIONS: RP1-13D10.2 is a long noncoding RNA that regulates LDLR and may contribute to low-density lipoprotein cholesterol response to statin treatment. These findings highlight the potential role of noncoding RNAs as determinants of interindividual variation in drug response.


Asunto(s)
LDL-Colesterol/metabolismo , Dislipidemias/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , ARN Largo no Codificante/genética , Simvastatina/farmacología , Adulto , Anciano , Apolipoproteína B-100/metabolismo , Biomarcadores/sangre , Ensayos Clínicos como Asunto , Dislipidemias/sangre , Dislipidemias/diagnóstico , Dislipidemias/genética , Femenino , Células Hep G2 , Humanos , Metabolismo de los Lípidos/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Factores de Tiempo , Transcripción Genética , Transfección , Regulación hacia Arriba
9.
PLoS One ; 6(4): e19420, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559365

RESUMEN

Genes involved in cholesterol biosynthesis and uptake are transcriptionally regulated in response to cellular sterol content in a coordinated manner. A number of these genes, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and LDL receptor (LDLR), undergo alternative splicing, resulting in reductions of enzyme or protein activity. Here we demonstrate that cellular sterol depletion suppresses, and sterol loading induces, alternative splicing of multiple genes involved in the maintenance of cholesterol homeostasis including HMGCR and LDLR, the key regulators of cellular cholesterol biosynthesis and uptake, respectively. These changes were observed in both in vitro studies of the HepG2 human hepatoma derived cell line, as well as in vivo studies of St. Kitts vervets, also known as African green monkeys, a commonly used primate model for investigating cholesterol metabolism. These effects are mediated in part by sterol regulation of polypyrimidine tract binding protein 1 (PTBP1), since knock-down of PTBP1 eliminates sterol induced changes in alternative splicing of several of these genes. Single nucleotide polymorphisms (SNPs) that influence HMGCR and LDLR alternative splicing (rs3846662 and rs688, respectively), have been associated with variation in plasma LDL-cholesterol levels. Sterol-induced changes in alternative splicing are blunted in carriers of the minor alleles for each of these SNPs, indicating an interaction between genetic and non-genetic regulation of this process. Our results implicate alternative splicing as a novel mechanism of enhancing the robust transcriptional response to conditions of cellular cholesterol depletion or accumulation. Thus coordinated regulation of alternative splicing may contribute to cellular cholesterol homeostasis as well as plasma LDL levels.


Asunto(s)
Empalme Alternativo , Colesterol/metabolismo , Regulación de la Expresión Génica , Alelos , Animales , Línea Celular , Chlorocebus aethiops , Exones , Humanos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Masculino , Polimorfismo de Nucleótido Simple , Receptores de LDL/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA