Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G195-G204, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38111988

RESUMEN

Patients with Parkinson's disease (PD) often have constipation. It is assumed that a disorder of the regulatory mechanism of colorectal motility by the central nervous system is involved in the constipation, but this remains unclear. The aim of this study was to investigate whether central neural pathways can modulate colorectal motility in a rat model of PD. PD model rats were generated by injection of 6-hydroxydopamine into a unilateral medial forebrain bundle and destruction of dopaminergic neurons in the substantia nigra. Colorectal motility was measured in vivo in anesthetized rats. Intraluminal administration of capsaicin, as a noxious stimulus, induced colorectal motility in sham-operated rats but not in PD rats. Intrathecally administered dopamine (DA) and serotonin (5-HT), which mediate the prokinetic effect of capsaicin, at the L6-S1 levels enhanced colorectal motility in PD rats similarly to that in sham-operated rats. In PD rats, capsaicin enhanced colorectal motility only when a GABAA receptor antagonist was preadministered into the lumbosacral spinal cord. Capsaicin-induced colorectal motility was abolished by intrathecal administration of a D2-like receptor antagonist but not by administration of 5-HT2 and 5-HT3 receptor antagonists. These findings demonstrate that the inhibitory GABAergic component becomes operative and the stimulatory serotonergic component is suppressed in PD rats. The alteration of the central regulatory mechanism of colorectal motility is thought to be related to the occurrence of constipation in PD patients. Our findings provide a new insight into the pathogenesis of defecation disorders observed in PD.NEW & NOTEWORTHY In a rat model of Parkinson's disease, the component of descending brain-spinal pathways that regulate colorectal motility through a mediation of the lumbosacral defecation center was altered from stimulatory serotonergic neurons to inhibitory GABAergic neurons. Our findings suggest that chronic constipation in Parkinson's disease patients may be associated with alterations in central regulatory mechanisms of colorectal motility. The plasticity in the descending pathway regulating colorectal motility may contribute to other disease-related defecation abnormalities.


Asunto(s)
Neoplasias Colorrectales , Enfermedad de Parkinson , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Capsaicina/farmacología , Serotonina/metabolismo , Encéfalo/metabolismo , Estreñimiento/etiología , Oxidopamina
2.
Am J Physiol Gastrointest Liver Physiol ; 324(6): G466-G475, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37096901

RESUMEN

The supraspinal brain regions controlling defecation reflex remain to be elucidated. The purpose of this study was to determine the roles of the hypothalamic A11 region and the medullary raphe nuclei in regulation of defecation. For chemogenetic manipulation of specific neurons, we used the double virus vector infection method in rats. hM3Dq or hM4Di was expressed in neurons of the A11 region and/or the raphe nuclei that send output to the lumbosacral defecation center. Immunohistological and functional experiments revealed that both the A11 region and the raphe nuclei directly connected with the lumbosacral spinal cord through descending pathways composed of stimulatory monoaminergic neurons. Stimulation of the hM3Dq-expressing neurons in the A11 region or the raphe nuclei enhanced colorectal motility only when GABAergic transmission in the lumbosacral spinal cord was blocked by bicuculline. Experiments using inhibitory hM4Di-expressing rats revealed that enhancement of colorectal motility caused by noxious stimuli in the colon is mediated by both the A11 region and the raphe nuclei. Furthermore, suppression of the A11 region and/or the raphe nuclei significantly inhibited water avoidance stress-induced defecation. These findings demonstrate that the A11 region and the raphe nuclei play an essential role in the regulation of colorectal motility. This is important because brain regions that mediate both intracolonic noxious stimuli-induced defecation and stress-induced defecation have been clarified for the first time.NEW & NOTEWORTHY The A11 region and the raphe nuclei, constituting descending pain inhibitory pathways, are related to both intracolonic noxious stimuli-induced colorectal motility and stress-induced defecation. Our findings may provide an explanation for the concurrent appearance of abdominal pain and defecation disorders in patients with irritable bowel syndrome. Furthermore, overlap of the pathway controlling colorectal motility with the pathway mediating stress responses may explain why stress exacerbates bowel symptoms.


Asunto(s)
Neoplasias Colorrectales , Núcleos del Rafe , Animales , Ratas , Bulbo Raquídeo , Núcleos del Rafe/fisiología , Médula Espinal/fisiología
3.
J Virol ; 96(18): e0081022, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36069552

RESUMEN

Stress granules (SGs) are dynamic structures that store cytosolic messenger ribonucleoproteins. SGs have recently been shown to serve as a platform for activating antiviral innate immunity; however, several pathogenic viruses suppress SG formation to evade innate immunity. In this study, we investigated the relationship between rabies virus (RABV) virulence and SG formation, using viral strains with different levels of virulence. We found that the virulent Nishigahara strain did not induce SG formation, but its avirulent offshoot, the Ni-CE strain, strongly induced SG formation. Furthermore, we demonstrated that the amino acid at position 95 in the RABV matrix protein (M95), a pathogenic determinant for the Nishigahara strain, plays a key role in inhibiting SG formation, followed by protein kinase R (PKR)-dependent phosphorylation of the α subunit of eukaryotic initiation factor 2α (eIF2α). M95 was also implicated in the accumulation of RIG-I, a viral RNA sensor protein, in SGs and in the subsequent acceleration of interferon induction. Taken together, our findings strongly suggest that M95-related inhibition of SG formation contributes to the pathogenesis of RABV by allowing the virus to evade the innate immune responses of the host. IMPORTANCE Rabies virus (RABV) is a neglected zoonotic pathogen that causes lethal infections in almost all mammalian hosts, including humans. Recently, RABV has been reported to induce intracellular formation of stress granules (SGs), also known as platforms that activate innate immune responses. However, the relationship between SG formation capacity and pathogenicity of RABV has remained unclear. In this study, by comparing two RABV strains with completely different levels of virulence, we found that the amino acid mutation from valine to alanine at position 95 of matrix protein (M95), which is known to be one of the amino acid mutations that determine the difference in virulence between the strains, plays a major role in SG formation. Importantly, M95 was involved in the accumulation of RIG-I in SGs and in promoting interferon induction. These findings are the first report of the effect of a single amino acid substitution associated with SGs on viral virulence.


Asunto(s)
Virus de la Rabia , Gránulos de Estrés , Proteínas de la Matriz Viral , Aminoácidos/metabolismo , Animales , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Interferones/inmunología , Proteínas Quinasas/inmunología , ARN Viral/metabolismo , Virus de la Rabia/genética , Virus de la Rabia/patogenicidad , Ribonucleoproteínas/metabolismo , Gránulos de Estrés/genética , Gránulos de Estrés/inmunología , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
Arch Virol ; 169(1): 7, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082138

RESUMEN

Akabane virus (AKAV) is a member of the genus Orthobunyavirus, family Peribunyaviridae. In addition to AKAV strains that cause fetal Akabane disease, which is characterized by abortion in ruminants, some AKAV strains cause postnatal infection characterized by nonsuppurative encephalomyelitis in ruminants. Here, we focused on the NSs protein, a virulence factor for most viruses belonging to the genus Orthobunyavirus, and we hypothesized that this protein would act as a neurovirulence factor in AKAV strains causing postnatal encephalomyelitis. We generated AKAV strains that were unable to produce the NSs protein, derived from two different genogroups, genogroups I and II, and then examined the role of their NSs proteins by inoculating mice intracerebrally with these modified viruses. Our results revealed that the neurovirulence of genogroup II strains is dependent on the NSs protein, whereas that of genogroup I strains is independent of this protein. Notably, infection of primary cultured bovine cells with these viruses suggested that the NSs proteins of both genogroups suppress innate immune-related gene expression with equal efficiency. These results indicate differences in the determinants of virulence of orthobunyaviruses.


Asunto(s)
Infecciones por Bunyaviridae , Encefalomielitis , Orthobunyavirus , Embarazo , Femenino , Bovinos , Animales , Ratones , Infecciones por Bunyaviridae/veterinaria , Orthobunyavirus/genética , Genotipo , Rumiantes
5.
Am J Physiol Gastrointest Liver Physiol ; 323(1): G1-G8, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35438007

RESUMEN

Our recent studies have shown that noxious stimuli in the colorectum enhance colorectal motility via the brain and spinal defecation centers in male rats. In female rats, however, noxious stimuli have no effect on colorectal motility. The purpose of this study was to determine whether sex hormones are major contributing factors for sex-dependent differences in neural components of the spinal defecation center. Colorectal motility was measured using an in vivo method under ketamine and α-chloralose anesthesia in rats. Capsaicin was administered into the colorectal lumen as noxious stimuli. Orchiectomy in male rats had no effect on the capsaicin-induced response of colorectal motility. However, in ovariectomized female rats, capsaicin administration enhanced colorectal motility, though intact female animals did not show enhanced motility. When estradiol was administered by using a sustained-release preparation in ovariectomized female rats, capsaicin administration did not enhance colorectal motility unless a GABAA receptor antagonist was intrathecally administered to the lumbosacral spinal cord. These findings suggest that estradiol allowed the GABAergic neurons to operate in response to intracolonic administration of capsaicin. The operation of GABAergic inhibition by the action of estradiol could be manifested in male rats only when the effects of male sex hormones were removed by orchiectomy. Taken together, our results indicate that sex hormones contribute to the sexually dimorphic response in colorectal motility enhancement in response to noxious stimuli through modulating GABAergic pathways.NEW & NOTEWORTHY This study demonstrated that estradiol permits inhibitory regulation in the spinal defecation center not only in female rats but also in orchiectomized male rats. GABAergic pathways are likely involved in the effect of estradiol. This is the first report showing that sex hormones affect colorectal motility through the alteration of neural components of the regulatory pathways. Our findings provide a novel insight into pathophysiological mechanisms of defecation disorders related to changes in sex hormones.


Asunto(s)
Neoplasias Colorrectales , Motilidad Gastrointestinal , Animales , Capsaicina/farmacología , Defecación/fisiología , Estradiol/farmacología , Femenino , Motilidad Gastrointestinal/fisiología , Hormonas Esteroides Gonadales/farmacología , Masculino , Ratas , Ratas Sprague-Dawley
6.
Am J Physiol Gastrointest Liver Physiol ; 323(1): G21-G30, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35470689

RESUMEN

Noxious stimuli on the colorectum cause colorectal contractions through activation of descending monoaminergic pathways projecting from the supraspinal defecation center to the spinal defecation center. Since it is known that substance P is involved in the response to peripheral noxious stimuli in the spinal cord, we investigated the effects of intrathecally administered substance P at L6-S1 levels on colorectal motility in rats that were anesthetized with α-chloralose and ketamine. Intrathecally administered substance P enhanced colorectal motility, even after transection of the thoracic spinal cord at the T4 level. Severing the pelvic nerves, but not the colonic nerves, abolished substance P enhanced colorectal motility. In the spinal cord at L6-S1 levels, expression of mRNA coding neurokinin (NK) 1-3 receptors was detected by RT-PCR. Immunohistological experiments revealed that preganglionic neurons of the pelvic nerves express NK1 receptors, whereas expression of NK2 receptors was not found. In addition, substance P-containing fibers densely innervated around the preganglionic neurons expressing NK1 receptors. An intrathecally administered NK1 receptor antagonist (spantide) attenuated capsaicin-induced colorectal contractions. These results suggest that the colokinetic action of substance P is mediated by the NK1 receptor in the spinal defecation center. Our findings indicate that substance P may function as a neurotransmitter in the spinal defecation center.NEW & NOTEWORTHY We found that intrathecally administered substance P enhanced colorectal motility in anesthetized rats. Neurokinin (NK) 1 receptors, but not NK2 receptors, were detected in preganglionic neurons of the pelvic nerves. Blockade of NK1 receptors in the spinal cord attenuated the enhanced colorectal motility in response to intracolonic noxious stimuli. The findings indicate that substance P may function as a neurotransmitter in the spinal reflex pathway controlling defecation.


Asunto(s)
Neoplasias Colorrectales , Defecación , Animales , Defecación/fisiología , Motilidad Gastrointestinal/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de Neuroquinina-1 , Médula Espinal/fisiología , Sustancia P/farmacología
7.
J Physiol ; 599(5): 1421-1437, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33347601

RESUMEN

KEY POINTS: This study showed a remarkable sex difference in responses of colorectal motility to noxious stimuli in the colorectum in rats: colorectal motility was enhanced in response to intracolonic administration of a noxious stimulant, capsaicin, in male rats but not in female rats. The difference in descending neurons from the brain to spinal cord operating after noxious stimulation could be responsible for the sex difference. In male rats, serotoninergic and dopaminergic neurons are dominantly activated, both of which activate the spinal defaecation centre. In female rats, GABAergic neurons in addition to serotoninergic neurons are activated. GABA may compete for facilitative action of 5-HT in the spinal defaecation centre, and thereby colorectal motility is not enhanced in response to intracolonic administration of capsaicin. The findings provide a novel insight into pathophysiological mechanisms of sex differences in functional defaecation disorders such as irritable bowel syndrome. ABSTRACT: We previously demonstrated that noxious stimuli in the colorectum enhance colorectal motility through activation of descending pain inhibitory pathways in male rats. It can be expected that the regulatory mechanisms of colorectal motility differ in males and females owing to remarkable sex differences in descending pain inhibitory pathways. Thus, we aimed to clarify sex differences in responses of colorectal motility to noxious stimuli in rats. Colorectal motility was measured in vivo in anaesthetized rats. Administration of a noxious stimulant, capsaicin, into the colorectal lumen enhanced colorectal motility in male rats but not in female rats. Quantitative PCR and immunohistochemistry showed that TRPV1 expression levels in the dorsal root ganglia and in the colorectal mucosa were comparable in male and female rats. When a GABAA receptor inhibitor was intrathecally administered to the L6-S1 level of the spinal cord, colorectal motility was facilitated in response to intracolonic capsaicin even in female rats. The capsaicin-induced response in the presence of the GABA blocker in female rats was inhibited by intrathecal administration of 5-HT2 and -3 receptor antagonists but not by a D2-like dopamine receptor antagonist. Our findings demonstrate that intracolonic noxious stimulation activates GABAergic and serotoninergic descending neurons in female rats, whereas serotoninergic and dopaminergic neurons are dominantly activated in male rats. Thus, the difference in the descending neurons operating after noxious stimulation would be responsible for the sexually dimorphic responses of colorectal motility. Our findings provide a novel insight into pathophysiological mechanisms of sex differences in functional defaecation disorders such as irritable bowel syndrome.


Asunto(s)
Neoplasias Colorrectales , Médula Espinal , Animales , Capsaicina/farmacología , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
8.
Am J Physiol Gastrointest Liver Physiol ; 317(4): G545-G555, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31460791

RESUMEN

We previously demonstrated that administration of norepinephrine, dopamine, and serotonin into the lumbosacral defecation center caused propulsive contractions of the colorectum. It is known that the monoamines in the spinal cord are released mainly from descending neurons in the brainstem. In fact, stimulation of the medullary raphe nuclei, the origin of descending serotonergic neurons, enhances colorectal motility via the lumbosacral defecation center. Therefore, the purpose of this study was to examine the roles of the noradrenergic nucleus locus coeruleus (LC) and dopaminergic nucleus A11 region in the defecation reflex. Colorectal motility was measured with a balloon in anesthetized rats. Electrical stimulation of the LC and A11 region increased colorectal pressure only when a GABAA receptor antagonist was injected into the lumbosacral spinal cord. The effects of the LC stimulation and A11 region stimulation on colorectal motility were inhibited by antagonists of α1-adrenoceptors and D2-like dopamine receptors injected into the lumbosacral spinal cord, respectively. Spinal injection of a norepinephrine-dopamine reuptake inhibitor augmented the colokinetic effect of LC stimulation. The effect of stimulation of each nucleus was abolished by surgical severing of the parasympathetic pelvic nerves. Our findings demonstrate that activation of descending noradrenergic neurons from the LC and descending dopaminergic neurons from the A11 region causes enhancement of colorectal motility via the lumbosacral defecation center. The present study provides a novel concept that the brainstem monoaminergic nuclei play a role as supraspinal defecation centers.NEW & NOTEWORTHY The present study demonstrates that electrical and chemical stimulations of the locus coeruleus or A11 region augment contractions of the colorectum. The effects of locus coeruleus and A11 stimulations on colorectal motility are due to activation of α1-adrenoceptors and D2-like dopamine receptors in the lumbosacral defecation center, respectively. The present study provides a novel concept that the brainstem monoaminergic nuclei play a role as supraspinal defecation centers.


Asunto(s)
Defecación/fisiología , Dopamina/fisiología , Locus Coeruleus/fisiología , Norepinefrina/fisiología , Médula Espinal/fisiología , Sistema Nervioso Simpático/fisiología , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Colon/efectos de los fármacos , Colon/fisiología , Agonistas de Dopamina/farmacología , Estimulación Eléctrica , Motilidad Gastrointestinal , Región Lumbosacra/inervación , Región Lumbosacra/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2/efectos de los fármacos , Recto/efectos de los fármacos , Recto/fisiología
9.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G631-G637, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30070581

RESUMEN

The central regulating mechanisms of defecation, especially roles of the spinal defecation center, are still unclear. We have shown that monoamines including norepinephrine, dopamine, and serotonin injected into the spinal defecation center cause propulsive contractions of the colorectum. These monoamines are the main neurotransmitters of descending pain inhibitory pathways. Therefore, we hypothesized that noxious stimuli in the colorectum would activate the descending monoaminergic pathways projecting to the spinal defecation center and that subsequently released endogenous monoamine neurotransmitters would enhance colorectal motility. Colorectal motility was measured in rats anesthetized with α-chloralose and ketamine. As a noxious stimulus, capsaicin was administered into the colorectal lumen. To interrupt neuronal transmission in the spinal defecation center, antagonists of norepinephrine, dopamine, and/or serotonin receptors were injected intrathecally at the L6-S1 spinal level, where the spinal defecation center is located. Intraluminal administration of capsaicin, acting on the transient receptor potential vanilloid 1 channel, caused transient propulsive contractions. The effect of capsaicin was abolished by surgical severing of the pelvic nerves or thoracic spinal transection at the T4 level. Capsaicin-induced contractions were blocked by preinjection of D2-like dopamine receptor and 5-hydroxytryptamine subtype 2 and 3 receptor antagonists into the spinal defecation center. We demonstrated that intraluminally administered capsaicin causes propulsive colorectal motility through reflex pathways involving the spinal and supraspinal defecation centers. Our results provide evidence that descending monoaminergic neurons are activated by noxious stimulation to the colorectum, leading to facilitation of colorectal motility. NEW & NOTEWORTHY The present study demonstrates that noxious stimuli in the colorectum activates the descending monoaminergic pathways projecting to the spinal defecation center and that subsequently released endogenous monoamine neurotransmitters, serotonin and dopamine, enhance colorectal motility. Our findings provide a possible explanation of the concurrent appearance of abdominal pain and bowel disorder in irritable bowel syndrome patients. Thus the present study may provide new insights into understanding of mechanisms of colorectal dysfunction involving the central nervous system.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Colon/fisiología , Defecación , Recto/fisiología , Médula Espinal/metabolismo , Animales , Capsaicina/farmacología , Colon/inervación , Masculino , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Contracción Muscular , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Neuronas Aferentes/fisiología , Ratas , Ratas Sprague-Dawley , Recto/inervación , Reflejo , Fármacos del Sistema Sensorial/farmacología , Médula Espinal/citología , Médula Espinal/fisiología , Canales Catiónicos TRPV/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G618-G630, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30001145

RESUMEN

ATP-sensitive K+ (KATP) channels are expressed in gastrointestinal smooth muscles, and their activity is regulated by muscarinic receptor stimulation. However, the physiological significance and mechanisms of muscarinic regulation of KATP channels are not fully understood. We examined the effects of the KATP channel opener cromakalim and the KATP channel blocker glibenclamide on electrical activity of single mouse ileal myocytes and on mechanical activity in ileal segment preparations. To explore muscarinic regulation of KATP channel activity and its underlying mechanisms, the effect of carbachol (CCh) on cromakalim-induced KATP channel currents ( IKATP) was studied in myocytes of M2 or M3 muscarinic receptor-knockout (KO) and wild-type (WT) mice. Cromakalim (10 µM) induced membrane hyperpolarization in single myocytes and relaxation in segment preparations from WT mice, whereas glibenclamide (10 µM) caused membrane depolarization and contraction. CCh (100 µM) induced sustained suppression of IKATP in cells from both WT and M2KO mice. However, CCh had a minimal effect on IKATP in M3KO and M2/M3 double-KO cells. The Gq/11 inhibitor YM-254890 (10 µM) and PLC inhibitor U73122 (1 µM), but not the PKC inhibitor calphostin C (1 µM), markedly decreased CCh-induced suppression of IKATP in WT cells. These results indicated that KATP channels are constitutively active and contribute to the setting of resting membrane potential in mouse ileal smooth muscles. M3 receptors inhibit the activity of these channels via a Gq/11/PLC-dependent but PKC-independent pathways, thereby contributing to membrane depolarization and contraction of smooth muscles. NEW & NOTEWORTHY We systematically investigated the regulation of ATP-sensitive K+ channels by muscarinic receptors expressed on mouse ileal smooth muscles. We found that M3 receptors inhibit the activity of ATP-sensitive K+ channels via a Gq/11/PLC-dependent, but PKC-independent, pathway. This muscarinic suppression of ATP-sensitive K+ channels contributes to membrane depolarization and contraction of smooth muscles.


Asunto(s)
Íleon/fisiología , Canales KATP/metabolismo , Contracción Muscular , Miocitos del Músculo Liso/metabolismo , Receptores Muscarínicos/metabolismo , Transducción de Señal , Potenciales de Acción , Animales , Carbacol/farmacología , Cromakalim/farmacología , Estrenos/farmacología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Íleon/metabolismo , Canales KATP/genética , Masculino , Ratones , Agonistas Muscarínicos/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Péptidos Cíclicos/farmacología , Pirrolidinonas/farmacología , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G341-G348, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29167116

RESUMEN

Colorectal motility is regulated by two defecation centers located in the brain and spinal cord. In previous studies, we have shown that administration of serotonin (5-HT) in the lumbosacral spinal cord causes enhancement of colorectal motility. Because spinal 5-HT is derived from neurons of the medullary raphe nuclei, including the raphe magnus, raphe obscurus, and raphe pallidus, we examined whether stimulation of the medullary raphe nuclei enhances colorectal motility via the lumbosacral defecation center. Colorectal pressure was recorded with a balloon in vivo in anesthetized rats. Electrical stimulation of the medullary raphe nuclei failed to enhance colorectal motility. Because GABAergic neurons can be simultaneously activated by the raphe stimulation and released GABA masks accelerating actions of the raphe nuclei on the lumbosacral defecation center, a GABAA receptor antagonist was preinjected intrathecally to manifest excitatory responses. When spinal GABAA receptors were blocked by the antagonist, electrical stimulation of the medullary raphe nuclei increased colorectal contractions. This effect of the raphe nuclei was inhibited by intrathecal injection of 5-hydroxytryptamine type 2 (5-HT2) and type 3 (5-HT3) receptor antagonists. In addition, injection of a selective 5-HT reuptake inhibitor in the lumbosacral spinal cord augmented the raphe stimulation-induced enhancement of colorectal motility. Transection of the pelvic nerves, but not transection of the colonic nerves, prevented the effect of the raphe nuclei on colorectal motility. These results demonstrate that activation of the medullary raphe nuclei causes augmented contractions of the colorectum via 5-HT2 and 5-HT3 receptors in the lumbosacral defecation center. NEW & NOTEWORTHY We have shown that electrical stimulation of the medullary raphe nuclei causes augmented contractions of the colorectum via pelvic nerves in rats. The effect of the medullary raphe nuclei on colorectal motility is exerted through activation of 5-hydroxytryptamine type 2 and type 3 receptors in the lumbosacral defecation center. The descending serotoninergic raphespinal tract represents new potential therapeutic targets against colorectal dysmotility such as irritable bowel syndrome.


Asunto(s)
Colon/inervación , Defecación , Motilidad Gastrointestinal , Plexo Lumbosacro/fisiología , Bulbo Raquídeo/fisiología , Núcleos del Rafe/fisiología , Neuronas Serotoninérgicas/fisiología , Animales , Defecación/efectos de los fármacos , Estimulación Eléctrica , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Motilidad Gastrointestinal/efectos de los fármacos , Inyecciones Espinales , Plexo Lumbosacro/efectos de los fármacos , Plexo Lumbosacro/metabolismo , Masculino , Bulbo Raquídeo/metabolismo , Inhibición Neural , Presión , Núcleos del Rafe/metabolismo , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores de Serotonina 5-HT2/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Neuronas Serotoninérgicas/efectos de los fármacos , Neuronas Serotoninérgicas/metabolismo , Serotonina/administración & dosificación , Serotonina/metabolismo
12.
J Physiol ; 594(15): 4339-50, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-26999074

RESUMEN

KEY POINTS: The pathophysiological roles of the CNS in bowel dysfunction in patients with irritable bowel syndrome and Parkinson's disease remain obscure. In the present study, we demonstrate that dopamine in the lumbosacral defaecation centre causes strong propulsive motility of the colorectum. The effect of dopamine is a result of activation of sacral parasympathetic preganglionic neurons via D2-like dopamine receptors. Considering that dopamine is a neurotransmitter of descending pain inhibitory pathways, our results highlight the novel concept that descending pain inhibitory pathways control not only pain, but also the defaecation reflex. In addition, severe constipation in patients with Parkinson's disease can be explained by reduced parasympathetic outflow as a result of a loss of the effect of dopaminergic neurons. ABSTRACT: We have recently demonstrated that intrathecally injected noradrenaline caused propulsive contractions of the colorectum. We hypothesized that descending pain inhibitory pathways control not only pain, but also the defaecation reflex. Because dopamine is one of the major neurotransmitters of descending pain inhibitory pathways in the spinal cord, we examined the effects of the intrathecal application of dopamine to the spinal defaecation centre on colorectal motility. Colorectal intraluminal pressure and expelled volume were recorded in vivo in anaesthetized rats. Slice patch clamp and immunohistochemistry were used to confirm the existence of dopamine-sensitive neurons in the sacral parasympathetic nuclei. Intrathecal application of dopamine into the L6-S1 spinal cord, where the lumbosacral defaecation centre is located, caused propulsive contractions of the colorectum. Inactivation of spinal neurons using TTX blocked the effect of dopamine. Although thoracic spinal transection had no effect on the enhancement of colorectal motility by intrathecal dopamine, the severing of the pelvic nerves abolished the enhanced motility. Pharmacological experiments revealed that the effect of dopamine is mediated primarily by D2-like dopamine receptors. Neurons labelled with retrograde dye injected at the colorectum showed an inward current in response to dopamine in slice patch clamp recordings. Furthermore, immunohistochemical analysis revealed that neurons immunoreactive to choline acetyltransferase express D2-like dopamine receptors. Taken together, our findings demonstrate that dopamine activates sacral parasympathetic preganglionic neurons via D2-like dopamine receptors and causes propulsive motility of the colorectum in rats. The present study supports the hypothesis that descending pain inhibitory pathways regulate defaecation reflexes.


Asunto(s)
Colon/fisiología , Región Lumbosacra/fisiología , Receptores de Dopamina D2/fisiología , Recto/fisiología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Anestésicos Locales/farmacología , Animales , Benzazepinas/farmacología , Colon/efectos de los fármacos , Defecación/fisiología , Dopamina/farmacología , Agonistas de Dopamina , Antagonistas de los Receptores de Dopamina D2/farmacología , Neuronas Dopaminérgicas/fisiología , Motilidad Gastrointestinal/fisiología , Haloperidol/farmacología , Inyecciones Espinales , Región Lumbosacra/inervación , Masculino , Contracción Muscular/fisiología , Quinpirol/farmacología , Ratas Sprague-Dawley , Receptores de Dopamina D2/agonistas , Recto/efectos de los fármacos , Médula Espinal/fisiología , Médula Espinal/cirugía , Tetrodotoxina/farmacología
13.
Biochem Biophys Res Commun ; 462(4): 322-5, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25960293

RESUMEN

The hearts of hibernating animals are capable of maintaining constant beating despite a decrease in body temperature to less than 10 °C during hibernation, suggesting that the hearts of hibernators are highly tolerant to a cold temperature. In the present study, we examined the expression pattern of cold-inducible RNA-binding protein (CIRP) in the hearts of hibernating hamsters, since CIRP plays important roles in protection of various types of cells against harmful effects of cold temperature. RT-PCR analysis revealed that CIRP mRNA is constitutively expressed in the heart of a non-hibernating euthermic hamster with several different forms probably due to alternative splicing. The short product contained the complete open reading frame for full-length CIRP. On the other hand, the long product had inserted sequences containing a stop codon, suggesting production of a C-terminal deletion isoform of CIRP. In contrast to non-hibernating hamsters, only the short product was amplified in hibernating animals. Induction of artificial hypothermia in non-hibernating hamsters did not completely mimic the splicing patterns observed in hibernating animals, although a partial shift from long form mRNA to short form was observed. Our results indicate that CIRP expression in the hamster heart is regulated at the level of alternative splicing, which would permit a rapid increment of functional CIRP when entering hibernation.


Asunto(s)
Empalme Alternativo , Hibernación/genética , Miocardio/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Cricetinae , Cartilla de ADN , Masculino , Mesocricetus , Reacción en Cadena de la Polimerasa , Proteínas de Unión al ARN/genética
14.
Am J Physiol Gastrointest Liver Physiol ; 306(9): G811-8, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24650548

RESUMEN

A well-developed myenteric plexus exists in the esophagus composed of striated muscle layers, but its functional role in controlling peristaltic movements remains to be clarified. The purpose of this study was to clarify the role of a local neural reflex consisting of capsaicin-sensitive primary afferent neurons and intrinsic neurons in esophageal peristalsis. We firstly devised a method to measure peristaltic movement of esophagus in vivo in rats. Rats were anesthetized with urethane, and esophageal intraluminal pressure and propelled intraluminal liquid volume were recorded. In the experimental system, an intraluminal pressure stimulus evoked periodic changes in intraluminal pressure of the esophagus, which were consistently accompanied by intraluminal liquid propulsion. Bilateral vagotomy abolished changes in intraluminal pressure as well as liquid propulsion. These results indicate that the novel method is appropriate for inducing peristalsis in the esophagus composed of striated muscles. Then, by using the method, we examined functional roles of the local reflex in esophageal peristalsis. For that purpose, we used rats in which capsaicin-sensitive neurons had been destroyed. The esophagus of capsaicin-treated rats showed a multiphasic rise in intraluminal pressure, which may due to noncoordinated contractions of esophageal muscles, whereas a monophasic response was observed in the intact rat esophagus. In addition, destruction of capsaicin-sensitive neurons increased the propelled liquid volume and lowered the pressure threshold for initiating peristalsis. These results suggest that the local neural reflex consisting of capsaicin-sensitive neurons and intrinsic neurons contributes to coordination of peristalsis and suppresses mechanosensory function of vagal afferents in the esophagus.


Asunto(s)
Capsaicina/farmacología , Esófago/efectos de los fármacos , Esófago/inervación , Plexo Mientérico/efectos de los fármacos , Peristaltismo/efectos de los fármacos , Reflejo/efectos de los fármacos , Fármacos del Sistema Sensorial/farmacología , Animales , Masculino , Mecanotransducción Celular , Plexo Mientérico/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Presión , Ratas , Ratas Wistar , Médula Espinal/cirugía , Factores de Tiempo , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología
15.
Nat Commun ; 15(1): 4941, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866781

RESUMEN

Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner. Academically open-sourced ( https://github.com/dbsb-juntendo/descSPIM ), descSPIM allows routine three-dimensional imaging of cleared samples in minutes. Thus, the dissemination of descSPIM will accelerate biomedical discoveries driven by tissue clearing technologies.


Asunto(s)
Encéfalo , Imagenología Tridimensional , Microscopía Fluorescente , Animales , Ratones , Encéfalo/diagnóstico por imagen , Humanos , Microscopía Fluorescente/métodos , Microscopía Fluorescente/instrumentación , Imagenología Tridimensional/métodos , Línea Celular Tumoral
16.
Sci Rep ; 11(1): 487, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436759

RESUMEN

The central nervous system is involved in regulation of defaecation. It is generally considered that supraspinal regions control the spinal defaecation centre. However, signal transmission from supraspinal regions to the spinal defaecation centre is still unclear. In this study, we investigated the regulatory role of an anorexigenic neuropeptide, α-MSH, in the spinal defaecation centre in rats. Intrathecal administration of α-MSH to the L6-S1 spinal cord enhanced colorectal motility. The prokinetic effect of α-MSH was abolished by severing the pelvic nerves. In contrast, severing the colonic nerves or thoracic cord transection at the T4 level had no impact on the effect of α-MSH. RT-PCR analysis revealed MC1R mRNA and MC4R mRNA expression in the L6-S1 spinal cord. Intrathecally administered MC1R agonists, BMS470539 and SHU9119, mimicked the α-MSH effect, but a MC4R agonist, THIQ, had no effect. These results demonstrate that α-MSH binds to MC1R in the spinal defaecation centre and activates pelvic nerves, leading to enhancement of colorectal motility. This is, to our knowledge, the first report showing the functional role of α-MSH in the spinal cord. In conclusion, our findings suggest that α-MSH is a candidate for a neurotransmitter from supraspinal regions to the spinal defaecation centre.


Asunto(s)
Colon/fisiología , Motilidad Gastrointestinal/fisiología , Receptor de Melanocortina Tipo 1/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Recto/fisiología , Médula Espinal/metabolismo , alfa-MSH/farmacología , Animales , Colon/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Hormonas/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Receptor de Melanocortina Tipo 1/genética , Receptor de Melanocortina Tipo 4/genética , Recto/efectos de los fármacos , Médula Espinal/efectos de los fármacos
17.
Neurogastroenterol Motil ; 31(4): e13518, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30549155

RESUMEN

BACKGROUND: Esophageal peristalsis is controlled by the brainstem via vago-vagal reflex. However, the precise regulatory mechanisms in the striated muscle portion are largely unknown. The aim of this study was to characterize peristaltic motility in the portion of the esophagus using a novel in vivo method in rats. METHODS: A balloon-tipped catheter was placed in the esophagus of a rat anesthetized with urethane. To induce esophageal peristalsis, the balloon was inflated by water injection. KEY RESULTS: When the balloon was inflated near the bronchial bifurcation, the balloon was transported in the aboral direction. Vagotomy abolished the peristaltic response. The threshold volume for inducing esophageal peristalsis varied according to the velocity of balloon distention; the volume being effective to induce peristalsis at a low inflation speed was smaller than the threshold volume at a rapid inflation speed. Even in the absence of inflation, keeping the balloon inside the esophagus during an interval period prevented subsequent induction of peristaltic motility. In addition, a nitric oxide synthase inhibitor abolished the induction of esophageal peristalsis. CONCLUSIONS AND INFERENCES: Our findings suggest that (a) in addition to the intensity, the velocity of distention is important for activating the mechanosensory mechanism to induce esophageal peristalsis, (b) tonic inputs from afferent fibers located at the mucosa may reduce the excitability of mechanosensors which is necessary for inducing peristalsis, and (c) nitric oxide plays essential roles in the induction of esophageal peristalsis. These results provide novel insights into the regulatory mechanisms of esophageal motility.


Asunto(s)
Deglución/fisiología , Esófago/fisiología , Músculo Estriado/fisiología , Peristaltismo/fisiología , Animales , Cateterismo , Masculino , Ratas , Ratas Sprague-Dawley , Vagotomía , Nervio Vago
18.
J Physiol Sci ; 68(3): 243-251, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28124286

RESUMEN

Somatostatin and its receptors are expressed in the spinal cord, but the functional roles of the peptide remain unknown. In this study, we examined the colokinetic effect of somatostatin in the spinal defecation center in anesthetized rats. Intrathecal application of somatostatin into the lumbo-sacral cord caused propulsive contractions of the colorectum. However, somatostatin administered intravenously or intrathecally to the thoracic cord failed to enhance colorectal motility. Transection of the thoracic cord had no significant impact on the colokinetic action of somatostatin. The enhancement of colorectal motility by intrathecal administration of somatostatin was abolished by severing the pelvic nerves. Our results demonstrate that somatostatin acting on the spinal defecation center causes propulsive motility of the colorectum in rats. Considering that somatostatin is involved in nociceptive signal transmission in the spinal cord, our results provide a rational explanation for the concurrent appearance of chronic abdominal pain and colonic motility disorders in IBS patients.


Asunto(s)
Defecación/efectos de los fármacos , Somatostatina/farmacología , Médula Espinal/efectos de los fármacos , Animales , Colon/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Inyecciones Espinales/métodos , Masculino , Ratas , Ratas Sprague-Dawley
19.
J Physiol Sci ; 68(4): 425-430, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28508339

RESUMEN

Central adenosine A1-receptor (A1AR)-mediated signals play a role in the induction of hibernation. We determined whether activation of the central A1AR enables rats to maintain normal sinus rhythm even after their body temperature has decreased to less than 20 °C. Intracerebroventricular injection of an adenosine A1 agonist, N6-cyclohexyladenosine (CHA), followed by cooling decreased the body temperature of rats to less than 20 °C. Normal sinus rhythm was fundamentally maintained during the extreme hypothermia. In contrast, forced induction of hypothermia by cooling anesthetized rats caused cardiac arrest. Additional administration of pentobarbital to rats in which hypothermia was induced by CHA also caused cardiac arrest, suggesting that the operation of some beneficial mechanisms that are not activated under anesthesia may be essential to keep heart beat under the hypothermia. These results suggest that central A1AR-mediated signals in the absence of anesthetics would provide an appropriate condition for maintaining normal sinus rhythm during extreme hypothermia.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacología , Adenosina/análogos & derivados , Temperatura Corporal/efectos de los fármacos , Hibernación/efectos de los fármacos , Hipotermia Inducida/métodos , Adenosina/farmacología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
20.
Physiol Rep ; 6(10): e13710, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29845766

RESUMEN

The presence of a fecal pellet in the colorectum causes ascending contraction and descending relaxation, propelling the pellet aborally. However, random occurrence of the reflexes at multiple sites would disturb sequential excretion of the pellets, resulting in inefficient defecation. Hence, we postulated that a regulatory mechanism to coordinate peristaltic motility initiated at adjacent portions of the colorectum may exist. Colorectal motility was recorded with balloons located at 2 cm, 5 cm and 7 cm from the anus in vivo in anesthetized rats. The presence of a balloon in the colorectum inhibited motility of the oral side and enhanced motility of the anal side. Both the ascending inhibitory and descending facilitatory actions were unaffected by cutting the pelvic nerves, suggesting little contribution of the lumbosacral defecation center. In contrast, disrupting the continuity of the enteric nervous system abolished the local reflex mechanism. The ascending inhibitory pathway operated in a condition in which facilitatory input from the lumbosacral defecation center was fully activated by intrathecal injection of ghrelin. We also found that functional impairment of the local reflex pathways was evident in rats that recovered from 2,4,6-trinitrobenzensulfonic acid-induced colitis. These results demonstrate that an intrinsic regulatory mechanism to coordinate peristaltic motility initiated at adjacent portions exists in the rat colorectum. The regulation may be beneficial to propel multiple pellets efficiently. In addition, impairment of the local regulatory mechanism might be involved in postinflammatory dysmotility in the colorectum.


Asunto(s)
Colon/fisiología , Defecación , Sistema Nervioso Entérico/fisiología , Motilidad Gastrointestinal , Recto/fisiología , Animales , Colitis/fisiopatología , Masculino , Sistema Nervioso Parasimpático/fisiología , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA