Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biochem Mol Toxicol ; 37(11): e23468, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37491939

RESUMEN

Ammonium ion (NH4 + ) is the major suspected molecule responsible for neurological complications of hepatic encephalopathy (HE). No specific pharmacological action for NH4 + -induced brain injury exists so far. Excitotoxicity is a well-known phenomenon in the brain of hyperammonemic cases. The hyperactivation of the N-Methyl- d-aspartate (NMDA) receptors by agents such as glutamate, an NH4 + metabolite, could cause excitotoxicity. Excitotoxicity is connected with events such as oxidative stress and neuroinflammation. Hence, utilizing NMDA receptor antagonists could prevent neurological complications of NH4 + neurotoxicity. In the current study, C57BL6/J mice received acetaminophen (APAP; 800 mg/kg, i.p) to induce HE. Hyperammonemic animals were treated with ketamine (0.25, 0.5, and 1 mg/kg, s.c) as an NMDA receptor antagonist. Animals' brain and plasma levels of NH4 + were dramatically high, and animals' locomotor activities were disturbed. Moreover, several markers of oxidative stress were significantly increased in the brain. A significant increase in brain tissue levels of TNF-α, IL-6, and IL-1ß was also detected in hyperammonemic animals. It was found that ketamine significantly normalized animals' locomotor activity, improved biomarkers of oxidative stress, and decreased proinflammatory cytokines. The effects of ketamine on oxidative stress biomarkers and inflammation seem to play a key role in its neuroprotective mechanisms in the current study.


Asunto(s)
Encefalopatía Hepática , Ketamina , Enfermedades del Sistema Nervioso , Síndromes de Neurotoxicidad , Ratones , Animales , Ketamina/efectos adversos , Amoníaco/toxicidad , Amoníaco/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Estrés Oxidativo , Encefalopatía Hepática/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Biomarcadores/metabolismo
2.
Pharmacology ; 108(4): 379-393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37253339

RESUMEN

INTRODUCTION: Cholestasis is the stoppage of bile flow, leading to the accumulation of potentially cytotoxic bile components in the liver. These cytotoxic molecules affect many organs. Cholestasis-induced lung injury is a severe complication that could lead to tissue fibrosis and respiratory distress. Substantial evidence indicates the role of oxidative stress and inflammatory response in the pathogenesis of cholestasis-associated pulmonary damage. Agmatine (AGM; 1-amino-4-guanidinobutane) is a biogenic amine endogenously synthesized in the human body. This amine provides potent anti-inflammatory and antioxidant properties. METHODS: In the current study, a series (six C57BL/6J male mice/group) of bile duct-ligated (BDL) animals were monitored at scheduled intervals (7, 14, and 28 days after the BDL operation) to ensure inflammatory response in their lung tissue (by analyzing their bronchoalveolar lavage fluid [BALF]). It was found that the level of inflammatory cells, pro-inflammatory cytokines, and IgG in the BALF reached their maximum level on day 28 after the BDL surgery. Therefore, other research groups were selected as follows: 1) Sham-operated (2.5 mL/kg normal saline, i.p., for 28 consecutive days), 2) BDL, 3) BDL + AGM (1 mg/kg/day, i.p., for 28 consecutive days), and 4) BDL + AGM (10 mg/kg/day, i.p., for 28 consecutive days). Then, the BALF was monitored at scheduled time intervals (7, 14, and 28 days post-BDL). RESULTS: It was found that pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß), bile acids, bilirubin, and inflammatory cells (monocytes, neutrophils, and lymphocytes) were significantly increased in the BALF of BDL mice. Moreover, biomarkers of oxidative stress were significantly increased in the pulmonary tissue of cholestatic animals. Lung tissue histopathological changes, tissue collagen deposition, and increased TGF-ß were also detected. It was found that AGM significantly ameliorated cholestasis-induced lung injury. CONCLUSION: The effects of AGM on inflammatory indicators, oxidative stress biomarkers, and tissue fibrosis seem to play a pivotal role in its protective properties.


Asunto(s)
Agmatina , Colestasis , Lesión Pulmonar , Neumonía , Masculino , Ratones , Humanos , Animales , Agmatina/farmacología , Agmatina/uso terapéutico , Agmatina/metabolismo , Ratones Endogámicos C57BL , Colestasis/complicaciones , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Hígado , Estrés Oxidativo , Fibrosis , Neumonía/tratamiento farmacológico , Neumonía/prevención & control , Neumonía/complicaciones , Biomarcadores/metabolismo , Citocinas/metabolismo , Aminas Biogénicas/metabolismo , Aminas Biogénicas/farmacología
3.
Drug Chem Toxicol ; 42(6): 615-623, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29722569

RESUMEN

Drug-induced liver injury is a major concern in clinical studies as well as in post-marketing surveillance. Previous evidence suggested that drug exposure during periods of inflammation could increase an individual's susceptibility to drug hepatoxicity. The antithyroid drugs, methimazole (MMI) and propylthiouracil (PTU) can cause adverse reactions in patients, with liver as a usual target. We tested the hypothesis that MMI and PTU could be rendered hepatotoxic in animals undergoing a modest inflammation. Mice were treated with a nonhepatotoxic dose of LPS (100 µg/kg, i.p) or its vehicle. Nonhepatotoxic doses of MMI (10, 25 and 50 mg/kg, oral) and PTU (10, 25 and 50 mg/kg, oral) were administered two hours after LPS treatment. It was found that liver injury was evident only in animals received both drug and LPS, as estimated by increases in serum alanine aminotransferase (ALT), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and TNF-α. An increase in liver myeloperoxidase (MPO) enzyme activity and tissue lipid peroxidation (LPO) in addition of liver glutathione (GSH) depletion were also detected in LPS and antithyroid drugs cotreated animals. Furthermore, histopathological changes including, endotheliitis, fatty changes, severe inflammatory cells infiltration (hepatitis) and sinusoidal congestion were detected in liver tissue. Methyl palmitate (2 g/kg, i.v, 44 hours before LPS), as a macrophage suppressor, significantly alleviated antithyroids hepatotoxicity in LPS-treated animals. The results indicate a synergistic liver injury from antithyroid drugs and bacterial lipopolysaccharide coexposure.


Asunto(s)
Antitiroideos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Inflamación/complicaciones , Metimazol/toxicidad , Propiltiouracilo/toxicidad , Animales , Antitiroideos/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/toxicidad , Masculino , Metimazol/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Propiltiouracilo/administración & dosificación
4.
Ren Fail ; 39(1): 745-753, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29214868

RESUMEN

Sulfasalazine is a commonly used drug for the treatment of rheumatoid arthritis and inflammatory bowel disease. There are several cases of renal injury encompass sulfasalazine administration in humans. The mechanism of sulfasalazine adverse effects toward kidneys is obscure. Oxidative stress and its consequences seem to play a role in the sulfasalazine-induced renal injury. The current investigation was designed to investigate the effect of sulfasalazine on kidney mitochondria. Rats received sulfasalazine (400 and 600 mg/kg/day, oral) for 14 consecutive days. Afterward, kidney mitochondria were isolated and assessed. Sulfasalazine-induced renal injury was biochemically evident by the increase in serum blood urea nitrogen (BUN), gamma-glutamyl transferase (γ-GT), and creatinine (Cr). Histopathological presentations of the kidney in sulfasalazine-treated animals revealed by interstitial inflammation, tubular atrophy, and tissue necrosis. Markers of oxidative stress including an increase in reactive oxygen species (ROS) and lipid peroxidation (LPO), a defect in tissue antioxidant capacity, and glutathione (GSH) depletion were also detected in the kidney of sulfasalazine-treated groups. Decreased mitochondrial succinate dehydrogenase activity (SDA), mitochondrial depolarization, mitochondrial GSH depletion, increase in mitochondrial ROS, LPO, and mitochondrial swelling were also evident in sulfasalazine-treated groups. Current data suggested that oxidative stress and mitochondrial injury might be involved in the mechanism of sulfasalazine-induced renal injury.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Riñón/patología , Mitocondrias/efectos de los fármacos , Sulfasalazina/efectos adversos , Lesión Renal Aguda/sangre , Administración Oral , Animales , Antioxidantes/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Biomarcadores/sangre , Biomarcadores/metabolismo , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Modelos Animales de Enfermedad , Glutatión/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Riñón/citología , Riñón/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , gamma-Glutamiltransferasa/sangre
5.
Ren Fail ; 38(1): 137-41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26479898

RESUMEN

Sulfasalazine is widely used for inflammatory-mediated disorders in human. Renal damage is a serious adverse effect accompanied sulfasalazine administration. No specific therapeutic option is available against this complication so far. Oxidative stress seems to play a role in sulfasalazine-induced renal injury. Current investigation was designed to evaluate the effect of N-acetyl cysteine (NAC) and dithiothreitol (DTT) as thiol reductants against sulfasalazine-induced renal injury in rats. Oral administration of sulfasalazine (600 mg/kg for 14 consecutive days) caused renal injury as judged by increase in serum level of creatinine and blood urea nitrogen. Furthermore, the level of reactive oxygen species and lipid peroxidation were raised in kidney tissue after sulfasalazine administration. Additionally, it was also found that renal glutathione reservoirs were significantly depleted in sulfasalazine-treated animals. Histopathological examination of kidney endorsed organ injury in drug-treated rats. Daily intraperitoneal administration of NAC (250 and 500 mg/kg/day) and/or DTT (15 and 30 mg/kg/day) effectively alleviated renal damage induced by sulfasalazine. Data suggested that thiol reductants could serve as potential protective agents with therapeutic capabilities against sulfasalazine adverse effect toward kidney.


Asunto(s)
Acetilcisteína/uso terapéutico , Lesión Renal Aguda/prevención & control , Antirreumáticos/efectos adversos , Ditiotreitol/uso terapéutico , Depuradores de Radicales Libres/uso terapéutico , Sulfasalazina/efectos adversos , Acetilcisteína/farmacología , Lesión Renal Aguda/inducido químicamente , Animales , Ditiotreitol/farmacología , Evaluación Preclínica de Medicamentos , Depuradores de Radicales Libres/farmacología , Masculino , Distribución Aleatoria , Ratas Sprague-Dawley
6.
J Biochem Mol Toxicol ; 29(4): 173-81, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25545158

RESUMEN

Liver injury is a deleterious adverse effect associated with methimazole administration, and reactive intermediates are suspected to be involved in this complication. Glyoxal is an expected reactive intermediate produced during methimazole metabolism. Current investigation was undertaken to evaluate the role of carnosine, metformin, and N-acetyl cysteine as putative glyoxal (carbonyl) traps, against methimazole-induced hepatotoxicity. Methimazole (100 mg/kg, intraperitoneally) was administered to intact and/or glutathione (GSH)-depleted mice and the role of glyoxal trapping agents was investigated. Methimazole caused liver injury as revealed by an increase in serum alanine aminotransferase and aspartate aminotransferase. Moreover, lipid peroxidation and protein carbonylation occurred significantly in methimazole-treated animals' liver. Hepatic GSH reservoirs were decreased, and inflammatory cells infiltration was observed in liver histopathology. Methimazole-induced hepatotoxicity was severe in GSH-depleted mice and accompanied with interstitial hemorrhage and necrosis of the liver. Glyoxal trapping agents effectively diminished methimazole-induced liver injury both in intact and/or GSH-depleted animals.


Asunto(s)
Acetilcisteína/uso terapéutico , Carnosina/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Metformina/uso terapéutico , Metimazol/toxicidad , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Masculino , Ratones , Necrosis , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/uso terapéutico
7.
Daru ; 22(1): 21, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24450391

RESUMEN

PURPOSE OF THE STUDY: Comparative in vitro studies were carried out to determine the adsorption characteristics of 3 drugs on activated charcoal (AC) and sodium polystyrene sulfonate (SPS). Activated charcoal (AC) has been long used as gastric decontamination agent for tricyclic antidepressants (TCA). METHODS: Solutions containing drugs (amitriptyline, clomipramine, or doxepin) and variable amount of AC or SPS were incubated for 30 minutes. RESULTS: At pH 1.2 the adsorbent: drug mass ratio varied from 2 : 1 to 40 : 1 for AC, and from 0.4 : 1 to 8 : 1 for SPS. UV-VIS spectrophotometer was used for the determination of free drug concentrations. The qmax of amitriptyline was 0.055 mg/mg AC and 0.574 mg/mg SPS, qmax of clomipramine was 0.053 mg/mg AC and 0.572 mg/mg SPS, and qmax of doxepin was 0.045 mg/mg AC and 0.556 mg/mg SPS. The results of adsorption experiments with SPS revealed higher values for the qmax parameters in comparison with AC. CONCLUSION: In vitro gastric decontamination experiments for antidepressant amitriptyline, clomipramine, and doxepin showed that SPS has higher qmax values than the corresponding experiments with AC. Therefore, we suggest SPS is a better gastric decontaminating agent for the management of acute TCA intoxication.

8.
Life Sci ; 336: 122284, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008208

RESUMEN

Taurine (TAU) is a sulfur-containing amino acid abundantly found in the human body. Endogenously, TAU is synthesized from cysteine in the liver. However, newborns rely entirely on TAU's dietary supply (milk). There is no investigation on the effect of long-term TAU administration on next-generation neurological development. The current study evaluated the effect of long-term TAU supplementation during the maternal gestational and litter weaning time on several neurological parameters in mice offspring. Moreover, the effects of TAU on mitochondrial function and oxidative stress biomarkers as plausible mechanisms of its action in the whole brain and hippocampus have been evaluated. TAU (0.5 % and 1 % w/v) was dissolved in the drinking water of pregnant mice (Day one of pregnancy), and amino acid supplementation was continued during the weaning time (post-natal day; PND = 21) until litters maturity (PND = 65). It was found that TAU significantly improved cognitive function, memory performance, reflexive motor activity, and emotional behaviors in F1-mice generation. TAU measurement in the brain and hippocampus revealed higher levels of this amino acid. TAU and ATP levels were also significantly higher in the mitochondria isolated from the whole brain and hippocampus. Based on these data, TAU could be suggested as a supplement during pregnancy or in pediatric formula. The effects of TAU on cellular mitochondrial function and energy metabolism might play a fundamental role in the positive effects of this amino acid observed in this investigation.


Asunto(s)
Suplementos Dietéticos , Taurina , Recién Nacido , Embarazo , Femenino , Niño , Ratones , Animales , Humanos , Taurina/farmacología , Pubertad , Encéfalo , Aminoácidos/farmacología
9.
Naunyn Schmiedebergs Arch Pharmacol ; 396(6): 1129-1142, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36651945

RESUMEN

Cholestasis is a clinical complication that primarily influences the liver. However, it is well known that many other organs could be affected by cholestasis. Lung tissue is a major organ influenced during cholestasis. Cholestasis-induced lung injury could induce severe complications such as respiratory distress, serious pulmonary infections, and tissue fibrosis. Unfortunately, there is no specific pharmacological intervention against this complication. Several studies revealed that oxidative stress and inflammatory response play a role in cholestasis-induced lung injury. Carnosine (CARN) is a dipeptide found at high concentrations in different tissues of humans. CARN's antioxidant and antiinflammatory properties are repeatedly mentioned in various experimental models. This study aimed to assess the role of CARN on cholestasis-induced lung injury. Rats underwent bile duct ligation (BDL) to induce cholestasis. Broncho-alveolar lavage fluid (BALF) levels of inflammatory cells, pro-inflammatory cytokines, and immunoglobulin were monitored at scheduled intervals (7, 14, and 28 days after BDL). Moreover, lung tissue histopathological alterations and biomarkers of oxidative stress were evaluated. A significant increase in BALF inflammatory cells, TNF-α, IL-1ß, IL-6, and immunoglobulin-G (IgG) was detected in the BALF of BDL rats. Moreover, lung tissue histopathological changes, collagen deposition, increased TGF-ß, and elevated levels of oxidative stress biomarkers were evident in cholestatic animals. It was found that CARN (100 and 500 mg/kg, i.p.) significantly alleviated lung oxidative stress biomarkers, inflammatory response, tissue fibrosis, and histopathological alterations. These data indicate the potential protective properties of CARN in the management of cholestasis-induced pulmonary damage. The effects of CARN on inflammatory response and oxidative stress biomarkers seems to play a crucial role in its protective properties in the lung of cholestatic animals.


Asunto(s)
Carnosina , Colestasis , Lesión Pulmonar , Neumonía , Ratones , Humanos , Ratas , Animales , Carnosina/farmacología , Carnosina/uso terapéutico , Dipéptidos/farmacología , Lesión Pulmonar/metabolismo , Colestasis/complicaciones , Colestasis/tratamiento farmacológico , Hígado , Fibrosis , Estrés Oxidativo , Neumonía/tratamiento farmacológico , Neumonía/prevención & control , Biomarcadores/metabolismo , Ligadura/efectos adversos
10.
Heliyon ; 9(10): e20557, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37810869

RESUMEN

Background: of the study: Hepatic encephalopathy (HE) is a complication in which brain ammonia (NH4+) levels reach critically high concentrations because of liver failure. HE could lead to a range of neurological complications from locomotor and behavioral disturbances to coma. Several tactics have been established for subsiding blood and brain NH4+. However, there is no precise intervention to mitigate the direct neurological complications of NH4+. Purpose: It has been found that oxidative stress, mitochondrial damage, and neuro-inflammation play a fundamental role in NH4+ neurotoxicity. Piracetam is a drug used clinically in neurological complications such as stroke and head trauma. Piracetam could significantly diminish oxidative stress and improve brain mitochondrial function. Research methods: In the current study, piracetam (100 and 500 mg/kg, oral) was used in a mice model of HE induced by thioacetamide (TA, 800 mg/kg, single dose, i.p). Results: Significant disturbances in animals' locomotor activity, along with increased oxidative stress biomarkers, including reactive oxygen species formation, protein carbonylation, lipid peroxidation, depleted tissue glutathione, and decreased antioxidant capacity, were evident in the brain of TA-treated mice. Meanwhile, mitochondrial permeabilization, mitochondrial depolarization, suppression of dehydrogenases activity, and decreased ATP levels were found in the brain of the TA group. The level of pro-inflammatory cytokines was also significantly high in the brain of HE animals. Conclusion: It was found that piracetam significantly enhanced mice's locomotor activity, blunted oxidative stress biomarkers, decreased inflammatory cytokines, and improved mitochondrial indices in hyperammonemic mice. These data suggest piracetam as a neuroprotective agent which could be repurposed for the management of HE.

11.
Clin Exp Hepatol ; 8(3): 195-210, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36685263

RESUMEN

Taurine (TAU) is a free amino acid abundant in the human body. Various physiological roles have been attributed to TAU. At the subcellular level, mitochondria are the primary targets for TAU function. Meanwhile, it has been found that TAU depletion is associated with severe pathologies. Cholestasis is a severe clinical complication that can progress to liver fibrosis, cirrhosis, and hepatic failure. Bile duct ligation (BDL) is a reliable model for assessing cholestasis/cirrhosis and related complications. The current study was designed to investigate the effects of cholestasis/cirrhosis on tissue and mitochondrial TAU reservoirs. Cholestatic rats were monitored (14 and 42 days after BDL surgery), and TAU levels were assessed in various tissues and isolated mitochondria. There was a significant decrease in TAU in the brain, heart, liver, kidney, skeletal muscle, intestine, lung, testis, and ovary of the BDL animals (14 and 42 days after surgery). Mitochondrial levels of TAU were also significantly depleted in BDL animals. Tissue and mitochondrial TAU levels in cirrhotic animals (42 days after the BDL operation) were substantially lower than those in the cholestatic rats (14 days after BDL surgery). These data indicate an essential role for tissue and mitochondrial TAU in preventing organ injury induced by cholestasis/cirrhosis and could justify TAU supplementation for therapeutic purposes.

12.
Artículo en Inglés | MEDLINE | ID: mdl-34909675

RESUMEN

Tramadol (TMDL) is an opioid analgesic widely administered for the management of moderate to severe pain. On the other hand, TMDL is commonly abused in many countries because of its availability and cheap cost. Renal injury is related to high dose or chronic administration of TMDL. No precise mechanism for TMDL-induced renal damage has been identified so far. The current study aimed to evaluate the potential role of oxidative stress and mitochondrial impairment in the pathogenesis of TMDL-induced renal injury. For this purpose, rats were treated with TMDL (40 and 80 â€‹mg/kg, i.p, 28 consecutive days). A significant increase in serum Cr and BUN was detected in TMDL groups. On the other hand, TMDL (80 â€‹mg/kg) caused a substantial increase in urine glucose, ALP, protein, and γ-GT levels. Moreover, urine Cr was significantly decreased in TMDL-treated rats (40 and 80 â€‹mg/kg). Renal histopathological alterations included inflammation, necrosis, and tubular degeneration in the kidney of TMDL-treated animals. Reactive oxygen species (ROS) formation, increased oxidized glutathione (GSSG), lipid peroxidation, and protein carbonylation was increased, whereas total antioxidant capacity and reduced glutathione levels were considerably decreased in TMDL groups. Significant mitochondrial impairment was also detected in the form of mitochondrial depolarization, adenosine-tri-phosphate (ATP) depletion, mitochondrial permeabilization, lipid peroxidation, and decreased mitochondrial dehydrogenase activity in the kidney of TMDL (80 â€‹mg/kg)-treated animals. These data suggest mitochondrial impairment and oxidative stress as mechanisms involved in the pathogenesis of TMDL-induced renal injury.

13.
Clin Exp Hepatol ; 7(4): 377-389, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35402721

RESUMEN

Aim of the study: Cholestasis is the stoppage of bile flow that primarily affects liver function. On the other hand, kidneys are also severely influenced during cholestasis. Cholestasis-induced kidney injury is known as cholemic nephropathy (CN). There is no precise pharmacological option in CN. Previous studies revealed that oxidative stress plays a crucial role in the pathogenesis of CN. On the other hand, the positive effects of pentoxifylline (PTX) against renal injury with different etiologies have been frequently reported. In the current study, the potential nephroprotective role of PTX in cholestasis-induced renal injury is investigated. Material and methods: Bile duct ligated (BDL) rats were treated with PTX (10, 50, and 100 mg/kg), and renal markers of oxidative stress, urine level of inflammatory cytokines, as well as renal histopathological alterations were monitored. Results: Significant changes in oxidative stress markers were detected in the BDL group. On the other hand, it was found that PTX (10, 50, and 100 mg/kg) significantly ameliorated cholestasis-induced oxidative stress in renal tissue. Renal histopathological changes, including interstitial inflammation, tubular atrophy, fibrosis, and cast formation, were detected in the BDL rats. Moreover, urine pro-inflammatory cytokines [interleukin (IL)-1, IL-9, IL-18, tumor necrosis factor α (TNF-α), and interferon γ (INF-γ)] were significantly increased in the cholestatic animals. PTX (10, 50, and 100 mg/kg, 14 days) significantly ameliorated renal histopathological alterations and urine levels of inflammatory cytokines. Conclusions: These data indicate a potential nephroprotective role for PTX in cholestasis. The effects of PTX on oxidative stress parameters and the inflammatory response could play a primary role in its renoprotective mechanisms.

14.
Biomed Pharmacother ; 109: 271-280, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30396085

RESUMEN

Cholemic nephropathy (CN) is a clinical complication associated with cholestasis and chronic liver diseases. CN could lead to renal failure and the need for kidney transplantation if not appropriately managed. On the other hand, although the clinical features of CN are well described, there is no clear idea on the precise cellular and molecular mechanisms of CN. The current study was designed to evaluate kidney mitochondrial function in cholestasis-associated CN. Rats underwent bile duct ligation (BDL) surgery, and kidney mitochondria were isolated at scheduled time intervals (14, 28, and 42 days after BDL operation). Several mitochondrial indices including mitochondrial permeabilization and swelling, glutathione and ATP content, mitochondrial depolarization, and lipid peroxidation were evaluated. Renal tissue markers of oxidative stress along with tissue histopathological changes and serum biochemistry were also analyzed. Severe kidney tissue histopathological alterations including interstitial inflammation, necrosis, and Bowman capsule dilation were detected in the BDL animals. Moreover, drastic elevation in renal fibrosis and collagen deposition was detected in BDL rats. Oxidative stress markers were also significantly enhanced in the kidney tissue of BDL animals. On the other hand, it was found that mitochondrial indices of functionality were significantly deteriorated in BDL rats. These data introduce mitochondrial dysfunction and energy metabolism disturbances as a fundamental mechanism involved in the pathogenesis of bile acids-associated renal injury during cholestasis.


Asunto(s)
Lesión Renal Aguda/metabolismo , Colestasis/metabolismo , Cirrosis Hepática/metabolismo , Mitocondrias/metabolismo , Lesión Renal Aguda/patología , Animales , Colestasis/patología , Peroxidación de Lípido/fisiología , Cirrosis Hepática/patología , Masculino , Mitocondrias/patología , Ratas , Ratas Sprague-Dawley
15.
Biomed Pharmacother ; 103: 75-86, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29635131

RESUMEN

Betaine is a derivative of the amino acid glycine widely investigated for its hepatoprotective properties against alcoholism. The protective properties of betaine in different other experimental models also have been documented. On the other hand, the exact cellular mechanism of cytoprotection provided by betaine is obscure. The current study was designed to evaluate the hepatoprotective effects of betaine and its potential mechanisms of hepatoprotection in two animal models of acute and chronic liver injury. Bile duct ligation (BDL) was used as a model of chronic liver injury and thioacetamide (TAA)-induced hepatotoxicity was applied as the acute liver injury model. Severe increase in serum markers of liver tissue damage along with significant liver tissue histopathological changes were evident in both acute and chronic models of hepatic injury. It was also found that tissue markers of oxidative stress were significantly increased in BDL and TAA-treated animals. Moreover, liver mitochondrial indices of functionality were deteriorated in both investigated models. Betaine supplementation (10 and 50 mg/kg, i.p) ameliorated hepatic injury as judged by decreased liver tissue histopathological alterations, a significant decrease in tissue markers of oxidative stress, and mitigation of serum biomarkers of hepatotoxicity. On the other hand, betaine (10 and 50 mg/kg, i.p) protected hepatocytes mitochondria in both chronic and acute models of hepatotoxicity. These data indicate that the antioxidative and mitochondria regulating properties of betaine could play a primary role in its mechanisms of hepatoprotection.


Asunto(s)
Betaína/farmacología , Hígado/lesiones , Hígado/patología , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Enfermedad Aguda , Animales , Conductos Biliares/patología , Biomarcadores/sangre , Enfermedad Crónica , Modelos Animales de Enfermedad , Ligadura , Masculino , Mitocondrias/efectos de los fármacos , Ratas Sprague-Dawley
17.
Clin Res Hepatol Gastroenterol ; 41(4): 424-434, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28283328

RESUMEN

AIM: Chronic liver injury and cirrhosis leads to liver failure. Hyperammonemia is a deleterious consequence of liver failure. On the other hand, oxidative stress seems to play a pivotal role in the pathogenesis of liver fibrosis as well as in the cytotoxic mechanism of ammonia. There is no promising therapeutic agent against ammonia-induced complications. The present study was conducted to evaluate the role of carnosine (CA) administration on liver pathological changes, elevated plasma ammonia, and its consequent events in cirrhotic rats. METHODS: Bile duct ligated (BDL) rats were used as a model of cirrhosis. CA (250, 500, and 1000mg/kg, daily, i.p) was administered for 28 consecutive days to BDL animals. At the end of treatments, markers of oxidative stress and liver fibrosis was determined in liver and serum biomarkers of liver injury and plasma ammonia was assessed. Moreover, changes in animals' locomotor activity were monitored. RESULTS: Severe bridging fibrosis, inflammation, and necrosis in liver, along with elevated serum biomarkers of liver injury were evident in BDL animals. Furthermore, plasma ammonia was drastically elevated in cirrhotic rats and animals' locomotor activity was suppressed. It was found that CA (250, 500, and 1000mg/kg, daily, i.p) significantly alleviated liver injury and its consequent events in cirrhotic rats. The data suggested that CA is not only a useful and safe agent to preserve liver function, but also prevented hyperammonemia and brain damage as a deleterious consequence of cirrhosis and liver failure.


Asunto(s)
Carnosina/uso terapéutico , Hiperamonemia/tratamiento farmacológico , Cirrosis Hepática/tratamiento farmacológico , Animales , Hiperamonemia/complicaciones , Cirrosis Hepática/complicaciones , Masculino , Ratas , Ratas Sprague-Dawley
18.
Biomed Pharmacother ; 86: 514-520, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28024286

RESUMEN

Ammonia-induced mitochondrial dysfunction and energy crisis is known as a critical consequence of hepatic encephalopathy (HE). Hence, mitochondria are potential targets of therapy in HE. The current investigation was designed to evaluate the role of taurine treatment on the brain and liver mitochondrial function in a rat model of hepatic encephalopathy and hyperammonemia. The animals received thioacetamide (400mg/kg, i.p, for three consecutive days at 24-h intervals) as a model of acute liver failure and hyperammonemia. Several biochemical parameters were investigated in the serum, while the animals' cognitive function and locomotor activity were monitored. Mitochondria was isolated from the rats' brain and liver and several indices were assessed in isolated mitochondria. Liver failure led to cognitive dysfunction and impairment in locomotor activity in the rats. Plasma and brain ammonia was high and serum markers of liver injury were drastically elevated in the thioacetamide-treated group. An assessment of brain and liver mitochondrial function in the thioacetamide-treated animals revealed an inhibition of succinate dehydrogenase activity (SDA), collapsed mitochondrial membrane potential, mitochondrial swelling, and increased reactive oxygen species (ROS). Furthermore, a significant decrease in mitochondrial ATP was detected in the brain and liver mitochondria isolated from thioacetamide-treated animals. Taurine treatment (250, 500, and 1000mg/kg) decreased mitochondrial swelling, ROS, and LPO. Moreover, the administration of this amino acid restored brain and liver mitochondrial ATP. These data suggest taurine to be a potential protective agent with therapeutic capability against hepatic encephalopathy and hyperammonemia-induced mitochondrial dysfunction and energy crisis.


Asunto(s)
Encéfalo/efectos de los fármacos , Hiperamonemia/tratamiento farmacológico , Fallo Hepático Agudo/tratamiento farmacológico , Hígado/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Taurina/farmacología , Adenosina Trifosfato/metabolismo , Amoníaco/farmacología , Animales , Encéfalo/metabolismo , Encefalopatía Hepática/tratamiento farmacológico , Encefalopatía Hepática/metabolismo , Hiperamonemia/metabolismo , Hígado/metabolismo , Fallo Hepático Agudo/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Tioacetamida/farmacología
19.
Toxicol Res ; 32(2): 133-40, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27123164

RESUMEN

Sulfasalzine is a widely administered drug against inflammatory-based disorders in human. However several cases of liver injury are associated with its administration. There is no stabilized safe protective agent against sulfasalazine-induced liver injury. Current investigation was designed to evaluate if N-acetylcysteine (NAC) and dithioteritol (DTT) as thiol reducing agents and/or vitamins C and E as antioxidants have any protective effects against sulfasalazine-induced hepatic injury in an ex vivo model of isolated rat liver. Rat liver was canulated and perfused via portal vein in a closed recirculating system. Different concentrations of sulfasalazine and/or thiol reductants and antioxidants were administered and markers of organ injury were monitored at different time intervals. It was found that 5 mM of sulfasalazine caused marked liver injury as judged by rise in liver perfusate level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) (p < 0.05). A significant amount of lipid peroxidation and hepatic glutathione depletion were detected in drug-treated livers, accompanied with significant histopathological changes of the organ. Administration of NAC (500 µM), DTT (400 µM), Vitamin C (200 µM), or vitamin E (200 µM) significantly alleviated sulfasalazine-induced hepatic injury in isolated perfused rat liver. The data obtained from current investigation indicate potential therapeutic properties of thiol reductants and antioxidants against sulfasalazine-induced liver injury.

20.
Bioimpacts ; 6(1): 3-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27340618

RESUMEN

INTRODUCTION: Sulfasalazine is a drug commonly administrated against inflammatory-based disorders. On the other hand, kidney and liver injury are serious adverse events accompanied by sulfasalazine administration. No specific therapeutic option is available against this complication. The current investigation was designed to evaluate the potential protective effects of taurine against sulfasalazine-induced kidney and liver injury in rats. METHODS: Male Sprague-Dawley rats were administered with sulfasalazine (600 mg/kg, oral) for 14 consecutive days. Animals received different doses of taurine (250, 500 and 1000 mg/ kg, i.p.) every day. Markers of organ injury were evaluated on day 15(th), 24 h after the last dose of sulfasalazine. RESULTS: Sulfasalazine caused renal and hepatic injury as judged by an increase in serum level of creatinine (Cr), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP). The levels of reactive oxygen species (ROS) and lipid peroxidation were raised in kidney and liver of sulfasalazine-treated animals. Moreover, tissue glutathione reservoirs were depleted after sulfasalazine administration. Histopathological changes of kidney and liver also endorsed organ injury. Taurine administration (250, 500 and 1000 mg/kg/day, i.p) alleviated sulfasalazine-induced renal and hepatic damage. CONCLUSION: Taurine administration could serve as a potential protective agent with therapeutic capabilities against sulfasalazine adverse effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA