Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant J ; 113(6): 1176-1191, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36628476

RESUMEN

Lateral roots are important for a wide range of processes, including uptake of water and nutrients. The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-RELATED (CLE) 1 ~ 7 peptide family and their cognate receptor CLV1 have been shown to negatively regulate lateral root formation under low-nitrate conditions. However, little is known about how CLE signaling regulates lateral root formation. A persistent obstacle in CLE peptide research is their functional redundancies, which makes functional analyses difficult. To address this problem, we generate the cle1 ~ 7 septuple mutant (cle1 ~ 7-cr1, cr stands for mutant allele generated with CRISPR/Cas9). cle1 ~ 7-cr1 exhibits longer lateral roots under normal conditions. Specifically, in cle1 ~ 7-cr1, the lateral root density is increased, and lateral root primordia initiation is found to be accelerated. Further analysis shows that cle3 single mutant exhibits slightly longer lateral roots. On the other hand, plants that overexpress CLE2 and CLE3 exhibit decreased lateral root lengths. To explore cognate receptor(s) of CLE2 and CLE3, we analyze lateral root lengths in clv1 barely any meristem 1(bam1) double mutant. Mutating both the CLV1 and BAM1 causes longer lateral roots, but not in each single mutant. In addition, genetic analysis reveals that CLV1 and BAM1 are epistatic to CLE2 and CLE3. Furthermore, gene expression analysis shows that the LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes, which promote lateral root formation, are upregulated in cle1 ~ 7-cr1 and clv1 bam1. We therefore propose that CLE2 and CLE3 peptides are perceived by CLV1 and BAM1 to mediate lateral root formation through LBDs regulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Péptidos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética
2.
J Plant Res ; 133(3): 419-428, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32246281

RESUMEN

Phytoparasitic nematodes parasitize many species of rooting plants to take up nutrients, thus causing severe growth defects in the host plants. During infection, root-knot nematodes induce the formation of a characteristic hyperplastic structure called a root-knot or gall on the roots of host plants. Although many previous studies addressed this abnormal morphogenesis, the underlying mechanisms remain uncharacterized. To analyze the plant-microorganism interaction at the molecular level, we established an in vitro infection assay system using the nematode Meloidogyne incognita and the model plant Arabidopsis thaliana. Time-course mRNA-seq analyses indicated the increased levels of procambium-associated genes in the galls, suggesting that vascular stem cells play important roles in the gall formation. Conversely, genes involved in the formation of secondary cell walls were decreased in galls. A neutral sugar analysis indicated that the level of xylan, which is one of the major secondary cell wall components, was dramatically reduced in the galls. These observations were consistent with the hypothesis of a decrease in the number of highly differentiated cells and an increase in the density of undifferentiated cells lead to gall formation. Our findings suggest that phytoparasitic nematodes modulate the developmental mechanisms of the host to modify various aspects of plant physiological processes and establish a feeding site.


Asunto(s)
Arabidopsis/parasitología , Pared Celular/parasitología , Nematodos/patogenicidad , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Animales , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos
3.
Plant Cell Physiol ; 57(3): 462-72, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26928932

RESUMEN

Clearing techniques eliminate factors that interfere with microscopic observation, including light scattering and absorption by pigments and cytoplasmic components. The techniques allow fluorescence-based detailed analyses of materials and characterization of the three-dimensional structure of organs. We describe a simple and rapid clearing and imaging method, termed 'TOMEI' (Transparent plant Organ MEthod for Imaging), which enables microscopic observation of intact plant organs. This method involves a clearing reagent containing 2,2'-thiodiethanol. Conveniently, transparent plant organs were prepared within only 3-6 h. We detected fluorescent stains at a depth of approximately 200 µm using confocal laser scanning microscopy and analyzed fluorescent proteins in internal tissues of transparent organs cleared using TOMEI. We adapted TOMEI for various plant organs of Arabidopsis thaliana and Oryza sativa, including leaves, flower buds, flower stalks, root and nematode-infected root-knots. We visualized whole leaves of A. thaliana from the adaxial epidermis to the abaxial epidermis as well as protoxylem and metaxylem vessels of vascular bundles embedded in spongy mesophyll cells. Inner floral organs were observed in flower buds cleared using TOMEI without the need to prepare sections or remove sepals. Multicolor imaging of fluorescent proteins and dyes, and analyses of the three-dimensional structure of plant organs based on optical sections are possible using TOMEI. We analyzed root-knots cleared using TOMEI and revealed that nematodes induce giant cell expansion in a DNA content-dependent manner. The TOMEI method is applicable to analysis of fluorescent proteins and dyes quantitatively with cell morphological characteristics in whole plant organs.


Asunto(s)
Arabidopsis/anatomía & histología , Imagenología Tridimensional/métodos , Especificidad de Órganos , Oryza/anatomía & histología , Tamaño de la Célula , ADN de Plantas/metabolismo , Flores/anatomía & histología , Fluorescencia , Mutación/genética , Células Vegetales/metabolismo , Raíces de Plantas/anatomía & histología , Coloración y Etiquetado
4.
Annu Rev Phytopathol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857544

RESUMEN

Plants are associated with diverse bacteria in nature. Some bacteria are pathogens that decrease plant fitness, and others are beneficial bacteria that promote plant growth and stress resistance. Emerging evidence also suggests that plant-associated commensal bacteria collectively contribute to plant health and are essential for plant survival in nature. Bacteria with different characteristics simultaneously colonize plant tissues. Thus, plants need to accommodate bacteria that provide service to the host plants, but they need to defend against pathogens at the same time. How do plants achieve this? In this review, we summarize how plants use physical barriers, control common goods such as water and nutrients, and produce antibacterial molecules to regulate bacterial growth and behavior. Furthermore, we highlight that plants use specialized metabolites that support or inhibit specific bacteria, thereby selectively recruiting plant-associated bacterial communities and regulating their function. We also raise important questions that need to be addressed to improve our understanding of plant-bacteria interactions.

5.
Sci Adv ; 9(22): eadf4803, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267361

RESUMEN

Plants use many long-distance and systemic signals to modulate growth and development, as well as respond to biotic and abiotic stresses. Parasitic nematodes infect host plant roots and cause severe damage to crop plants. However, the molecular mechanisms that regulate parasitic nematode infections are still unknown. Here, we show that plant parasitic root-knot nematodes (RKNs), Meloidogyne incognita, modulate the host CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE)-CLV1 signaling module to promote the infection progression. Plants deficient in the CLE signaling pathway show enhanced RKN resistance, whereas CLE overexpression leads to increased susceptibility toward RKN. Grafting analysis shows that CLV1 expression in the shoot alone is sufficient to positively regulate RKN infection. Together with results from the split-root culture system, infection assays, and CLE3-CLV1 binding assays, we conclude that mobile root-derived CLE signals are perceived by CLV1 in the shoot, which subsequently produce systemic signals to promote gall formation and RKN reproduction.


Asunto(s)
Plantas , Tylenchoidea , Animales , Transducción de Señal , Tylenchoidea/fisiología
6.
Sci Rep ; 10(1): 8836, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483126

RESUMEN

In plants, growth-defense tradeoffs are essential for optimizing plant performance and adaptation under stress conditions, such as pathogen attack. Root-knot nematodes (RKNs) cause severe economic losses in many crops worldwide, although little is known about the mechanisms that control plant growth and defense responses during nematode attack. Upon investigation of Arabidopsis thaliana infected with RKN (Meloidogyne incognita), we observed that the atypical transcription factor DP-E2F-like 1 (DEL1) repressed salicylic acid (SA) accumulation in RKN-induced galls. The DEL1-deficient Arabidopsis mutant (del1-1) exhibited excessive SA accumulation in galls and is more resistant to RKN infection. In addition, excessive lignification was observed in galls of del1-1. On the other hand, the root growth of del1-1 is reduced after RKN infection. Taken together, these findings suggest that DEL1 plays an important role in the balance between plant growth and defense responses to RKN infection by controlling SA accumulation and lignification.


Asunto(s)
Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Tylenchoidea/fisiología , Animales , Arabidopsis/crecimiento & desarrollo , Arabidopsis/parasitología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos , Lignina/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Tumores de Planta/genética , Tumores de Planta/parasitología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/parasitología , Ácido Salicílico/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
7.
Front Plant Sci ; 8: 1195, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28747918

RESUMEN

Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs) are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery. Galls contain giant cells (GCs) and neighboring cells, and the GCs are a source of nutrients for the parasitizing nematode. Highly active cell proliferation was observed in galls. However, the underlying mechanisms that regulate the symptoms triggered by the plant-nematode interaction have not yet been elucidated. In this study, we deciphered the molecular mechanism of gall formation with an in vitro infection assay system using RKN Meloidogyne incognita, and the model plant Arabidopsis thaliana. By taking advantages of this system, we performed next-generation sequencing-based transcriptome profiling, and found that the expression of procambium identity-associated genes were enriched during gall formation. Clustering analyses with artificial xylogenic systems, together with the results of expression analyses of the candidate genes, showed a significant correlation between the induction of gall cells and procambium-associated cells. Furthermore, the promoters of several procambial marker genes such as ATHB8, TDR and WOX4 were activated not only in M. incognita-induced galls, but similarly in M. javanica induced-galls and Heterodera schachtii-induced syncytia. Our findings suggest that phytoparasitic nematodes modulate the host's developmental regulation of the vascular stem cells during gall formation.

8.
J Infect Chemother ; 2(2): 90-93, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-29681355

RESUMEN

The enzymatic detection of a polymerase chain reaction product (ED-PCR), a new detection method of PCR-amplified DNA, was evaluated for the identification of staphylococcal enterotoxin (SE) and toxic shock syndrome toxin 1 (TSST-1) genes. A total of 61 Staphylococcus aureus strains, including reference strains and strains isolated from clinical specimens and food poisoning outbreaks, were examined by ED-PCR and by reverse passive latex agglutination (RPLA) phenotypic identification. There was 100% agreement between the genotypic and phenotypic identification of SEA, SEB, SEC, SEE strains and TSST-1. In the case of SED, however, 4 strains were positive by ED-PCR and negative by RPLA. ED-PCR offers an accurate alternative to traditional immunoassays or conventional PCR using electrophoresis for the detection of SE and TSST-1 production yielding results that are more precise than with older techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA